INTRODUCTION

LINEAR

 ALGEBRAFifth Edition

MANUAL FOR INSTRUCTORS

Gilbert Strang

Massachusetts Institute of Technology
math.mit.edu/linearalgebra
web.mit.edu/18.06
video lectures: ocw.mit.edu
math.mit.edu/~gs
www.wellesleycambridge.com email: linearalgebrabook @ gmail.com

Wellesley - Cambridge Press
Box 812060
Wellesley, Massachusetts 02482

Problem Set 5.1, page 254

$1 \operatorname{det}(2 A)=2^{4} \operatorname{det} A=8 ; \operatorname{det}(-A)=(-1)^{4} \operatorname{det} A=\frac{1}{2} ; \operatorname{det}\left(A^{2}\right)=\frac{1}{4} ; \operatorname{det}\left(A^{-1}\right)=2$.
$2 \operatorname{det}\left(\frac{1}{2} A\right)=\left(\frac{1}{2}\right)^{3} \operatorname{det} A=-\frac{1}{8}$ and $\operatorname{det}(-A)=(-1)^{3} \operatorname{det} A=1 ; \operatorname{det}\left(A^{2}\right)=1$; $\operatorname{det}\left(A^{-1}\right)=-1$.

3 (a) False: $\operatorname{det}(I+I)$ is not $1+1$ (except when $n=1$) (b) True: The product rule extends to $A B C$ (use it twice) (c) False: $\operatorname{det}(4 A)$ is $4^{n} \operatorname{det} A$
(d) False: $A=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right], B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], A B-B A=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$ is invertible.

4 Exchange rows 1 and 3 to show $\left|J_{3}\right|=-1$. Exchange rows 1 and 4 , then rows 2 and 3 to show $\left|J_{4}\right|=1$.
$5\left|J_{5}\right|=1$ by exchanging row 1 with 5 and row 2 with $4 . \quad\left|J_{6}\right|=-1,\left|J_{7}\right|=-1$. Determinants $1,1,-1,-1$ repeat in cycles of length 4 so the determinant of J_{101} is +1 .

6 To prove Rule 6 , multiply the zero row by $t=2$. The determinant is multiplied by 2 (Rule 3) but the matrix is the same. So $2 \operatorname{det}(A)=\operatorname{det}(A)$ and $\operatorname{det}(A)=0$.
$7 \operatorname{det}(Q)=1$ for rotation and $\operatorname{det}(Q)=1-2 \sin ^{2} \theta-2 \cos ^{2} \theta=-1$ for reflection.
$8 Q^{\mathrm{T}} Q=I \Rightarrow\left|Q^{\mathrm{T}}\right||Q|=|Q|^{2}=1 \Rightarrow|Q|= \pm 1 ; Q^{n}$ stays orthogonal so its determinant can't blow up as $n \rightarrow \infty$.
$9 \operatorname{det} A=1$ from two row exchanges. $\operatorname{det} B=2$ (subtract rows 1 and 2 from row 3 , then columns 1 and 2 from column 3). $\operatorname{det} C=0$ (equal rows) even though $C=A+B$!

10 If the entries in every row add to zero, then $(1,1, \ldots, 1)$ is in the nullspace: singular A has det $=0$. (The columns add to the zero column so they are linearly dependent.) If every row adds to one, then rows of $A-I$ add to zero (not necessarily $\operatorname{det} A=1$).
$11 C D=-D C \Rightarrow \operatorname{det} C D=(-1)^{n} \operatorname{det} D C$ and not just $-\operatorname{det} D C$. If n is even then $\operatorname{det} C D=\operatorname{det} D C$ and we can have an invertible $C D$.
$12 \operatorname{det}\left(A^{-1}\right)$ divides twice by $a d-b c$ (once for each row). This gives $\operatorname{det} A^{-1}=$ $\frac{a d-b c}{(a d-b c)^{2}}=\frac{1}{a d-b c}$.

13 Pivots $1,1,1$ give determinant $=\mathbf{1}$; pivots $1,-2,-3 / 2$ give determinant $=\mathbf{3}$.
$\mathbf{1 4} \operatorname{det}(A)=\mathbf{3 6}$ and the 4 by 4 second difference matrix has det $=\mathbf{5}$.
15 The first determinant is $\mathbf{0}$, the second is $1-2 t^{2}+t^{4}=\left(1-t^{2}\right)^{2}$.
16 A singular rank one matrix has determinant $=0$. The skew-symmetric K also has $\operatorname{det} K=0$ (see $\# \mathbf{1 7}$): a skew-symmetric matrix K of odd order 3 .

17 Any 3 by 3 skew-symmetric K has $\operatorname{det}\left(K^{\mathrm{T}}\right)=\operatorname{det}(-K)=(-1)^{3} \operatorname{det}(K)$. This is $-\operatorname{det}(K)$. But always $\operatorname{det}\left(K^{\mathrm{T}}\right)=\operatorname{det}(K)$. So we must have $\operatorname{det}(K)=0$ for 3 by 3 .
$18\left|\begin{array}{ccc}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|=\left|\begin{array}{ccc}1 & a & a^{2} \\ 0 & b-a & b^{2}-a^{2} \\ 0 & c-a & c^{2}-a^{2}\end{array}\right|=\left|\begin{array}{cc}b-a & b^{2}-a^{2} \\ c-a & c^{2}-a^{2}\end{array}\right|$ (to reach 2 by 2, eliminate a and a^{2} in row 1 by column operations)-subtract a and a^{2} times column 1 from columns 2 and 3 . Factor out $b-a$ and $c-a$ from the 2 by 2 : $(b-a)(c-a)\left|\begin{array}{ll}1 & b+a \\ 1 & c+a\end{array}\right|=(b-a)(c-a)(c-b)$.

19 For triangular matrices, just multiply the diagonal entries: $\operatorname{det}(U)=6, \operatorname{det}\left(U^{-1}\right)=\frac{1}{6}$, and $\operatorname{det}\left(U^{2}\right)=36$. 2 by 2 matrix: $\operatorname{det}(U)=a d, \operatorname{det}\left(U^{2}\right)=a^{2} d^{2}$. If $a d \neq 0$ then $\operatorname{det}\left(U^{-1}\right)=1 / a d$.
$20 \operatorname{det}\left[\begin{array}{cc}a-L c & b-L d \\ c-\ell a & d-\ell b\end{array}\right]$ reduces to $(a d-b c)(1-L \ell)$. The determinant changes if you do two row operations at once.

21 We can exchange rows using the three elimination steps in the problem, followed by multiplying row 1 by -1 . So Rules 5 and 3 give Rule 2. (Since Rules 4 and 3 give 5, they also give Rule 2.)
$22 \operatorname{det}(A)=3, \operatorname{det}\left(A^{-1}\right)=\frac{1}{3}, \operatorname{det}(A-\lambda I)=\lambda^{2}-4 \lambda+3$. The numbers $\lambda=1$ and $\lambda=3$ give $\operatorname{det}(A-\lambda I)=0$. The (singular !) matrices are

$$
A-I=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \text { and } A-3 I=\left[\begin{array}{rr}
-1 & 1 \\
1 & -1
\end{array}\right]
$$

Note to instructor: You could explain that this is the reason determinants come before eigenvalues. Identify $\lambda=1$ and $\lambda=3$ as the eigenvalues of A.
$23 A=\left[\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right]$ has $\operatorname{det}(A)=10, A^{2}=\left[\begin{array}{rr}18 & 7 \\ 14 & 11\end{array}\right], \operatorname{det}\left(A^{2}\right)=100, \quad A^{-1}=$ $\frac{1}{10}\left[\begin{array}{rr}3 & -1 \\ -2 & 4\end{array}\right]$ has det $\frac{1}{10} \cdot \operatorname{det}(A-\lambda I)=\lambda^{2}-7 \lambda+10=0$ when $\lambda=\mathbf{2}$ or $\mathbf{5}$; those are eigenvalues.

24 Here $A=L U$ with $\operatorname{det}(L)=1$ and $\operatorname{det}(U)=-6=$ product of pivots, so also $\operatorname{det}(A)=-6 . \operatorname{det}\left(U^{-1} L^{-1}\right)=-\frac{1}{6}=1 / \operatorname{det}(A)$ and $\operatorname{det}\left(U^{-1} L^{-1} A\right)$ is $\operatorname{det} I=1$.

25 When the i, j entry is $i j$, row $2=2$ times row 1 so $\operatorname{det} A=0$.
26 When the $i j$ entry is $i+j$, row $3-$ row $2=\operatorname{row} 2-$ row 1 so A is singular: $\operatorname{det} A=0$.
$27 \operatorname{det} A=a b c, \operatorname{det} B=-a b c d, \operatorname{det} C=a(b-a)(c-b)$ by doing elimination.
28 (a) True: $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=0$ (b) False: A row exchange gives $-\operatorname{det}=$ product of pivots. (c) False: $A=2 I$ and $B=I$ have $A-B=I$ but the determinants have $2^{n}-1 \neq 1$ (d) True: $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=\operatorname{det}(B A)$.
$29 A$ is rectangular so $\operatorname{det}\left(A^{\mathrm{T}} A\right) \neq\left(\operatorname{det} A^{\mathrm{T}}\right)(\operatorname{det} A)$: these determinants are not defined. In fact if A is tall and thin $(m>n)$, then $\operatorname{det}\left(A^{\mathrm{T}} A\right)$ adds up $|\operatorname{det} B|^{2}$ where the B 's are all the n by n submatrices of A.

30 Derivatives of $f=\ln (a d-b c)$:

$$
\left[\begin{array}{ll}
\partial f / \partial a & \partial f / \partial c \\
\partial f / \partial b & \partial f / \partial d
\end{array}\right]=\left[\begin{array}{cc}
\frac{d}{a d-b c} & \frac{-b}{a d-b c} \\
\frac{-c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right]=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]=A^{-1}
$$

31 The Hilbert determinants are $1,8 \times 10^{-2}, 4.6 \times 10^{-4}, 1.6 \times 10^{-7}, 3.7 \times 10^{-12}$, $5.4 \times 10^{-18}, 4.8 \times 10^{-25}, 2.7 \times 10^{-33}, 9.7 \times 10^{-43}, 2.2 \times 10^{-53}$. Pivots are ratios of determinants so the 10 th pivot is near 10^{-10}. The Hilbert matrix is numerically difficult (ill-conditioned). Please see the Figure 7.1 and Section 8.3.

32 Typical determinants of $\operatorname{rand}(n)$ are $10^{6}, 10^{25}, 10^{79}, 10^{218}$ for $n=50,100,200,400$. $\operatorname{randn}(n)$ with normal distribution gives $10^{31}, 10^{78}, 10^{186}$, $\boldsymbol{I n f}$ which means $\geq 2^{1024}$. MATLAB allows $1.999999999999999 \times 2^{1023} \approx 1.8 \times 10^{308}$ but one more 9 gives Inf!

33 I now know that maximizing the determinant for $1,-1$ matrices is Hadamard's problem (1893): see Brenner in American Math. Monthly volume 79 (1972) 626-630. Neil Sloane's wonderful On-Line Encyclopedia of Integer Sequences (research.att.com/~ njas) includes the solution for small n (and more references) when the problem is changed to 0,1 matrices. That sequence A003432 starts from $n=0$ with $1,1,1,2$, $3,5,9$. Then the $1,-1$ maximum for size n is 2^{n-1} times the 0,1 maximum for size $n-1($ so $(32)(5)=\mathbf{1 6 0}$ for $n=6$ in sequence A003433).

To reduce the $1,-1$ problem from 6 by 6 to the 0,1 problem for 5 by 5 , multiply the six rows by ± 1 to put +1 in column 1 . Then subtract row 1 from rows 2 to 6 to get a 5 by 5 submatrix S with entries -2 and 0 . Then divide S by -2 .

Here is an advanced MATLAB code that finds a $1,-1$ matrix with largest $\operatorname{det} A=48$ for $n=5$:
$n=5 ; p=(n-1)^{\wedge} 2 ; A 0=\operatorname{ones}(n) ;$ maxdet $=0 ;$
for $k=0: 2^{\wedge} p-1$
Asub $=\operatorname{rem}\left(\operatorname{floor}\left(k . * 2 .^{\wedge}(-p+1: 0)\right), 2\right) ; A=A 0 ; A(2: n, 2: n)=1-2 *$
reshape(Asub, $n-1, n-1$);
if $\operatorname{abs}(\operatorname{det}(A))>$ maxdet, maxdet $=\operatorname{abs}(\operatorname{det}(A)) ; \max A=A$;
end
end

Output: $\operatorname{maxA}=$	1	1	1	1	1
1	1	1	-1	-1	
1	1	-1	1	-1	
1	-1	1	1	-1	
1	-1	-1	-1	1	$\quad \operatorname{maxdet}=48$.

34 Reduce B by row operations to [row 3 ; row 2 ; row 1]. Then $\operatorname{det} B=-6$ (odd permutation from the order of the rows in A).

Problem Set 5.2, page 266

$\mathbf{1} \operatorname{det} A=1+18+12-9-4-6=12$, the rows of A are independent; det $B=0$, row $1+$ row $2=$ row 3 so the rows of B are linearly dependent; $\operatorname{det} C=-1$, so C has independent rows ($\operatorname{det} C$ has one term, an odd permutation).
$2 \operatorname{det} A=-2$, independent; $\operatorname{det} B=0$, dependent; $\operatorname{det} C=-1$, independent but $\operatorname{det} D=0$ because its submatrix B has dependent rows.

3 The problem suggests 3 ways to see that $\operatorname{det} A=0$: All cofactors of row 1 are zero. A has rank ≤ 2. Each of the 6 terms in $\operatorname{det} A$ is zero. Notice also that column 2 has no pivot.
$4 a_{11} a_{23} a_{32} a_{44}$ gives -1 , because the terms $a_{23} a_{32}$ have columns 2 and 3 in reverse order. $a_{14} a_{23} a_{32} a_{41}$ which has 2 row exchanges gives +1 , $\operatorname{det} A=1-1=0$. Using the same entries but now taken from B, $\operatorname{det} B=2 \cdot 4 \cdot 4 \cdot 2-1 \cdot 4 \cdot 4 \cdot 1=64-16=48$.

5 Four zeros in the same row guarantee det $=0$ (and also four zeros in the same column). $A=I$ has 12 zeros (this is the maximum with det $\neq 0$).

6 (a) If $a_{11}=a_{22}=a_{33}=0$ then 4 terms will be zeros (b) 15 terms must be zero. Effectively we are counting the permutations that make everyone move; 2,3,1 and $3,1,2$ for $n=3$ mean that the other 4 permutations take a term from the diagonal of A; so those terms are 0 when the diagonal is all zeros.
$75!/ 2=60$ permutation matrices (half of $5!=120$ permutations) have det $=+1$. Move row 5 of I to the top; then starting from $(5,1,2,3,4)$ elimination will do four row exchanges on P.

8 If $\operatorname{det} A \neq 0$, then certainly some term $a_{1 \alpha} a_{2 \beta} \cdots a_{n \omega}$ in the big formula is not zero! Move rows $1,2, \ldots, n$ into rows $\alpha, \beta, \ldots, \omega$. Then all these nonzero a 's will be on the main diagonal.

9 The big formula has six terms all ± 1 : say q are -1 and $6-q$ are 1 . Then $\operatorname{det} A=$ $-q+6-q=$ even (so $\operatorname{det} A=5$ is impossible). Also $\operatorname{det} A=6$ is impossible. All 3 even permutations like $a_{11} a_{22} a_{33}$ would have to give +1 (so an even number of -1 's in the matrix). But all 3 odd permutations like $a_{11} a_{23} a_{32}$ would have to give -1 (so an odd number of -1 's in the matrix). We can't have it both ways, so $\operatorname{det} A=4$ is best possible and not hard to arrange : put -1 's on the main diagonal.

10 The $4!/ 2=12$ even permutations are $(1,2,3,4),(2,1,4,3),(3,1,4,2),(4,3,2,1)$, and $8 P$'s with one number in place and even permutation of the other three numbers: examples are $1,3,4,2$ and $1,4,2,3$.
$\operatorname{det}\left(I+P_{\text {even }}\right)$ is always 16 or 4 or $0(16$ comes from $I+I)$.
$11 C=\left[\begin{array}{rr}d & -c \\ -b & a\end{array}\right]$ and $A C^{\mathrm{T}}=(a d-b c) I$ and $D=\left[\begin{array}{rrr}0 & 42 & -35 \\ 0 & -21 & 14 \\ -3 & 6 & -3\end{array}\right]$. $\operatorname{det} B=1(0)+2(42)+3(-35)=-21$.
$12 A^{-1}=C^{\mathrm{T}} / \operatorname{det} A=C^{\mathrm{T}} / 4$.
13 (a) $C_{1}=0, C_{2}=-1, C_{3}=0, C_{4}=1 \quad$ (b) $C_{n}=-C_{n-2}$ by cofactors of row 1 then cofactors of column 1 . Therefore $C_{10}=-C_{8}=C_{6}=-C_{4}=C_{2}=-1$.

14 For the matrices in Problem 13 to produce nonzeros in the big formula, we must choose 1 's from column 2 then column 1 , column 4 then column 3, and so on. Therefore n must be even to have det $\neq 0$. The number of row exchanges is $n / 2$ so the overall determinant is $C_{n}=(-1)^{n / 2}$.

15 The 1,1 cofactor of the n by n matrix is E_{n-1}. The 1,2 cofactor has a single 1 in its first column, with cofactor E_{n-2} : sign gives $-E_{n-2}$. So $E_{n}=E_{n-1}-E_{n-2}$. Then E_{1} to E_{6} is $1,0,-1,-1,0,1$ and this cycle of six will repeat: $E_{100}=E_{4}=-1$.

16 The 1,1 cofactor of the n by n matrix is F_{n-1}. The 1,2 cofactor has a 1 in column 1, with cofactor F_{n-2}. Multiply by $(-1)^{1+2}$ and also (-1) from the 1,2 entry to find $\boldsymbol{F}_{\boldsymbol{n}}=\boldsymbol{F}_{\boldsymbol{n}-\mathbf{1}}+\boldsymbol{F}_{\boldsymbol{n}-\mathbf{2}}$. So these determinants are Fibonacci numbers.

17 Use cofactors along row 4 instead of row 1 (last row instead of first).

$$
\left|B_{4}\right|=2 \operatorname{det}\left[\begin{array}{rrr}
1 & -1 & \\
-1 & 2 & -1 \\
& -1 & 2
\end{array}\right]+\operatorname{det}\left[\begin{array}{rrr}
1 & -1 & \\
-1 & 2 & \\
& -1 & -1
\end{array}\right]=2\left|B_{3}\right|-\operatorname{det}\left[\begin{array}{rr}
1 & -1 \\
-1 & 2
\end{array}\right] .
$$ So $\left|B_{4}\right|=2\left|B_{3}\right|-\left|B_{2}\right|$.

18 Rule 3 (linearity in row 1) gives $\left|B_{n}\right|=\left|A_{n}\right|-\left|A_{n-1}\right|=(n+1)-n=1$.
19 Since x, x^{2}, x^{3} are all in the same row, they never multiply each other in $\operatorname{det} V_{4}$. The determinant is zero at $x=a$ or b or c because of equal rows! So $\operatorname{det} V$ has factors $(x-a)(x-b)(x-c)$. Multiply by the cofactor V_{3}. The Vandermonde matrix $V_{i j}=\left(x_{i}\right)^{j-1}$ is for fitting a polynomial $p(\boldsymbol{x})=\boldsymbol{b}$ at the points x_{i}. It has $\operatorname{det} V=$ product of all $x_{k}-x_{m}$ for $k>m$.
$20 G_{2}=-1, G_{3}=2, G_{4}=-3$, and $G_{n}=(-1)^{n-1}(n-1)$. One way to reach that G_{n} is to multiply the n eigenvalues $-1,-1, \ldots,-1, n-1$ of the matrix. Is there a good choice of row operations to produce this determinant G_{n} ?
$21 S_{1}=3, S_{2}=8, S_{3}=21$. The rule looks like every second number in Fibonacci's sequence $\ldots 3,5,8,13,21,34,55, \ldots$ so the guess is $S_{4}=55$. Following the solution to Problem 30 with 3's instead of 2's on the diagonal confirms $S_{4}=81+1-9-9-9=$ 55 . Problem 32 directly proves $S_{n}=F_{2 n+2}$.

22 Changing 3 to 2 in the corner reduces the determinant $F_{2 n+2}$ by 1 times the cofactor of that corner entry. This cofactor is the determinant of S_{n-1} (one size smaller) which is $F_{2 n}$. Therefore changing 3 to 2 changes the determinant to $F_{2 n+2}-F_{2 n}$ which is Fibonacci's $F_{2 n+1}$.

23 (a) If we choose an entry from B we must choose an entry from the zero block; result zero. This leaves entries from A times entries from D leading to $(\operatorname{det} A)(\operatorname{det} D)$ (b) and (c) Take $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right], C=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], D=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$. See \#25.

24 (a) All the lower triangular blocks L_{k} have 1 's on the diagonal and det $=1$. Then use $A_{k}=L_{k} U_{k}$ to find $\operatorname{det} U_{k}=\operatorname{det} A_{k}=2,6,-6$ for $k=1,2,3$
(b) Equation (3) in this section gives the k th pivot as $\operatorname{det} A_{k} / \operatorname{det} A_{k-1}$. So $\operatorname{det} A_{k}=$ $5,6,7$ gives pivot $d_{k}=5 / 1,6 / 5,7 / 6$.
25 Problem 23 gives det $\left[\begin{array}{rr}I & 0 \\ -C A^{-1} & I\end{array}\right]=1$ and $\operatorname{det}\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]=|A|$ times $\mid D-$ $C A^{-1} B \mid$. By the product rule this is $\left|A D-A C A^{-1} B\right|$. If $\boldsymbol{A C}=\boldsymbol{C A}$ this is $\mid A D-$ $C A A^{-1} B \mid=\operatorname{det}(\boldsymbol{A D}-\boldsymbol{C B})$.

26 If A is a row and B is a column then $\operatorname{det} M=\operatorname{det} A B=\operatorname{dot}$ product of A and B. If A is a column and B is a row then $A B$ has rank 1 and $\operatorname{det} M=\operatorname{det} A B=0$ (unless $m=n=1$). This block matrix M is invertible when $A B$ is invertible which certainly requires $m \leq n$.

27 (a) $\operatorname{det} A=a_{11} C_{11}+\cdots+a_{1 n} C_{1 n}$. Derivative with respect to $a_{11}=\operatorname{cofactor} C_{11}$.
28 Row $1-2$ row $2+$ row $3=0$ so this matrix is singular and $\operatorname{det} A$ is zero.
29 There are five nonzero products, all 1's with a plus or minus sign. Here are the (row, column) numbers and the signs: $+(1,1)(2,2)(3,3)(4,4)+(1,2)(2,1)(3,4)(4,3)-$ $(1,2)(2,1)(3,3)(4,4)-(1,1)(2,2)(3,4)(4,3)-(1,1)(2,3)(3,2)(4,4)$. Total -1.

30 The 5 products in solution 29 change to $16+1-4-4-4$ since A has 2 's and -1 's:

$$
\begin{gathered}
(2)(2)(2)(2)+(-1)(-1)(-1)(-1)-(-1)(-1)(2)(2)-(2)(2)(-1)(-1)- \\
(2)(-1)(-1)(2)=\mathbf{5}=\boldsymbol{n}+\mathbf{1}
\end{gathered}
$$

$31 \operatorname{det} P=-1$ because the cofactor of $P_{14}=1$ in row one has sign $(-1)^{1+4}$. The big formula for $\operatorname{det} P$ has only one term $(1 \cdot 1 \cdot 1 \cdot 1)$ with minus sign because three exchanges take $4,1,2,3$ into $1,2,3,4 ; \operatorname{det}\left(P^{2}\right)=(\operatorname{det} P)(\operatorname{det} P)=+1$ so

$$
\operatorname{det}\left[\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right]=\operatorname{det}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \text { is not right. }
$$

32 The problem is to show that $F_{2 n+2}=3 F_{2 n}-F_{2 n-2}$. Keep using Fibonacci's rule:

$$
F_{2 n+2}=F_{2 n+1}+F_{2 n}=F_{2 n}+F_{2 n-1}+F_{2 n}=2 F_{2 n}+\left(F_{2 n}-F_{2 n-2}\right)=3 F_{2 n}-F_{2 n-2} .
$$

33 The difference from 20 to 19 multiplies its 3 by 3 cofactor $=1$: then det drops by 1 .

34 (a) The last three rows must be dependent because only 2 columns are nonzero
(b) In each of the 120 terms: Choices from the last 3 rows must use 3 different columns; at least one of those choices will be zero.

35 Subtracting 1 from the n, n entry subtracts its cofactor $C_{n n}$ from the determinant. That cofactor is $C_{n n}=1$ (smaller Pascal matrix). Subtracting 1 from 1 leaves 0 .

Problem Set 5.3, page 283

1 (a) $|A|=\left|\begin{array}{ll}2 & 5 \\ 1 & 4\end{array}\right|=3,\left|B_{1}\right|=\left|\begin{array}{ll}1 & 5 \\ 2 & 4\end{array}\right|=6,\left|B_{2}\right|=\left|\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right|=3$ so $x_{1}=$
$-6 / 3=-2$ and $x_{2}=3 / 3=1 \quad$ (b) $|A|=4,\left|B_{1}\right|=3,\left|B_{2}\right|=2,\left|B_{3}\right|=1$.
Therefore $x_{1}=3 / 4$ and $x_{2}=-1 / 2$ and $x_{3}=1 / 4$.
2 (a) $y=\left|\begin{array}{ll}a & 1 \\ c & 0\end{array}\right| /\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=c /(a d-b c) \quad$ (b) $y=\operatorname{det} B_{2} / \operatorname{det} A=(f g-i d) / D$.
That is because B_{2} with $(1,0,0)$ in column 2 has $\operatorname{det} B_{2}=f g-i d$.
3 (a) $x_{1}=3 / 0$ and $x_{2}=-2 / 0$: no solution \quad (b) $x_{1}=x_{2}=\mathbf{0} / \mathbf{0}$: undetermined.

4 (a) $x_{1}=\operatorname{det}\left(\left[\begin{array}{lll}\boldsymbol{b} & \boldsymbol{a}_{2} & \boldsymbol{a}_{3}\end{array}\right]\right) / \operatorname{det} A$, if $\operatorname{det} A \neq 0$. This is $\left|B_{1}\right| /|A|$.
(b) The determinant is linear in its first column so $\left|x_{1} \boldsymbol{a}_{1}+x_{2} \boldsymbol{a}_{2}+x_{3} \boldsymbol{a}_{3} \boldsymbol{a}_{2} \boldsymbol{a}_{3}\right|$ splits into $x_{1}\left|\boldsymbol{a}_{1} \boldsymbol{a}_{2} \boldsymbol{a}_{3}\right|+x_{2}\left|\boldsymbol{a}_{2} \boldsymbol{a}_{2} \boldsymbol{a}_{3}\right|+x_{3}\left|\boldsymbol{a}_{3} \boldsymbol{a}_{2} \boldsymbol{a}_{3}\right|$. The last two determinants are zero because of repeated columns, leaving $x_{1}\left|\boldsymbol{a}_{1} \boldsymbol{a}_{2} \boldsymbol{a}_{3}\right|$ which is $x_{1} \operatorname{det} A$.

5 If the first column in A is also the right side b then $\operatorname{det} A=\operatorname{det} B_{1}$. Both B_{2} and B_{3} are singular since a column is repeated. Therefore $x_{1}=\left|B_{1}\right| /|A|=1$ and $x_{2}=x_{3}=0$.

6 (a) $\left[\begin{array}{rrr}1 & -\frac{2}{3} & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & -\frac{7}{3} & 1\end{array}\right] \quad$ (b) $\frac{1}{4}\left[\begin{array}{lll}3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3\end{array}\right] . \quad \begin{aligned} & \text { An invertible symmetric matrix } \\ & \text { has a symmetric inverse. }\end{aligned}$

7 If all cofactors $=0$ then A^{-1} would be the zero matrix if it existed; cannot exist. (And also, the cofactor formula gives $\operatorname{det} A=0$.) $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ has no zero cofactors but it is not invertible.
$8 C=\left[\begin{array}{rrr}6 & -3 & 0 \\ 3 & 1 & -1 \\ -6 & 2 & 1\end{array}\right]$ and $A C^{\mathrm{T}}=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right] . \begin{aligned} & \text { This is }(\operatorname{det} A) I \text { and } \operatorname{det} A=3 . \\ & \text { The } 1,3 \text { cofactor of } A \text { is } 0 . \\ & \text { Then } C_{31}=4 \text { or 100: no change. }\end{aligned}$
9 If we know the cofactors and $\operatorname{det} A=1$, then $C^{\mathrm{T}}=A^{-1}$ and also $\operatorname{det} A^{-1}=1$.
Now A is the inverse of C^{T}, so A can be found from the cofactor matrix for C.
10 Take the determinant of $A C^{\mathrm{T}}=(\operatorname{det} A) I$. The left side gives $\operatorname{det} A C^{\mathrm{T}}=(\operatorname{det} A)(\operatorname{det} C)$ while the right side gives $(\operatorname{det} A)^{n}$. Divide by $\operatorname{det} A$ to reach $\operatorname{det} C=(\operatorname{det} A)^{n-1}$.

11 The cofactors of A are integers. Division by $\operatorname{det} A= \pm 1$ gives integer entries in A^{-1}.
12 Both $\operatorname{det} A$ and $\operatorname{det} A^{-1}$ are integers since the matrices contain only integers. But $\operatorname{det} A^{-1}=1 / \operatorname{det} A$ so $\operatorname{det} A$ must be 1 or -1 .
$13 A=\left[\begin{array}{lll}0 & 1 & 3 \\ 1 & 0 & 1 \\ 2 & 1 & 0\end{array}\right]$ has cofactor matrix $C=\left[\begin{array}{rrr}-1 & 2 & 1 \\ 3 & -6 & 2 \\ 1 & 3 & -1\end{array}\right]$ and $A^{-1}=\frac{1}{5} C^{\mathrm{T}}$.
14 (a) Lower triangular L has cofactors $C_{21}=C_{31}=C_{32}=0 \quad$ (b) $C_{12}=C_{21}$, $C_{31}=C_{13}, C_{32}=C_{23}$ make S^{-1} symmetric. (c) Orthogonal Q has cofactor matrix $C=(\operatorname{det} Q)\left(Q^{-1}\right)^{\mathrm{T}}= \pm Q$ also orthogonal. Note $\operatorname{det} Q=1$ or -1 .

15 For $n=5, C$ contains 25 cofactors and each 4 by 4 cofactor has 24 terms. Each term needs 3 multiplications: total 1800 multiplications vs. 125 for Gauss-Jordan.

16 (a) Area $\left|\begin{array}{ll}\mathbf{3} & 2 \\ \mathbf{1} & \mathbf{4}\end{array}\right|=10 \quad$ (b) and (c) Area $10 / 2=5$, these triangles are half of the parallelogram in (a).
$\mathbf{1 7}$ Volume $=\left|\begin{array}{lll}\mathbf{3} & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3\end{array}\right|=\mathbf{2 0} . \begin{aligned} & \text { Area of faces }= \\ & \text { length of cross product }\end{aligned}=\left|\begin{array}{lll}\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ 3 & 1 & 1 \\ \mathbf{1} & 3 & 1\end{array}\right|=\begin{aligned} & -2 \boldsymbol{i}-2 \boldsymbol{j}+8 \boldsymbol{k} \\ & \text { length }=\mathbf{6} \sqrt{2}\end{aligned}$
18 (a) Area $\frac{1}{2}\left|\begin{array}{lll}2 & 1 & 1 \\ 3 & 4 & 1 \\ 0 & 5 & 1\end{array}\right|=5 \quad$ (b) $5+$ new triangle area $\frac{1}{2}\left|\begin{array}{rrr}2 & 1 & 1 \\ 0 & 5 & 1 \\ -1 & 0 & 1\end{array}\right|=5+7=12$.
$19\left|\begin{array}{ll}2 & 1 \\ 2 & 3\end{array}\right|=4=\left|\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right|$ because the transpose has the same determinant. See $\# 22$.

20 The edges of the hypercube have length $\sqrt{1+1+1+1}=2$. The volume $\operatorname{det} H$ is $2^{4}=16$. $(H / 2$ has orthonormal columns. Then $\operatorname{det}(H / 2)=1$ leads again to $\operatorname{det} H=16$ in 4 dimensions.)

21 The maximum volume $L_{1} L_{2} L_{3} L_{4}$ is reached when the edges are orthogonal in \mathbf{R}^{4}. With entries 1 and -1 all lengths are $\sqrt{4}=2$. The maximum determinant is $2^{4}=16$, achieved in Problem 20. For a 3 by 3 matrix, $\operatorname{det} A=(\sqrt{3})^{3}$ can't be achieved by ± 1. $\rho^{2} \sin \phi d \rho d \phi d \theta$.

22 This question is still waiting for a solution! An 18.06 student showed me how to transform the parallelogram for A to the parallelogram for A^{T}, without changing its area. (Edges slide along themselves, so no change in baselength or height or area.)
$23 A^{\mathrm{T}} A=\left[\begin{array}{c}\boldsymbol{a}^{\mathrm{T}} \\ \boldsymbol{b}^{\mathrm{T}} \\ \boldsymbol{c}^{\mathrm{T}}\end{array}\right]\left[\begin{array}{lll}\boldsymbol{a} & \boldsymbol{b} & \boldsymbol{c}\end{array}\right]=\left[\begin{array}{ccc}\boldsymbol{a}^{\mathrm{T}} \boldsymbol{a} & 0 & 0 \\ 0 & \boldsymbol{b}^{\mathrm{T}} \boldsymbol{b} & 0 \\ 0 & 0 & \boldsymbol{c}^{\mathrm{T}} \boldsymbol{c}\end{array}\right]$ has $\begin{gathered}\operatorname{det} A^{\mathrm{T}} A=(\|a\|\|b\|\|c\|)^{2} \\ \operatorname{det} A \\ \end{gathered}$
24 The box has height 4 and volume $=\operatorname{det}\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 3 & 4\end{array}\right]=4 . \boldsymbol{i} \times \boldsymbol{j}=\boldsymbol{k}$ and $(\boldsymbol{k} \cdot \boldsymbol{w})=4$.
25 The n-dimensional cube has 2^{n} corners, $n 2^{n-1}$ edges and $2 n(n-1)$-dimensional faces. Coefficients from $(2+x)^{n}$ in Worked Example 2.4A. Cube from $2 I$ has volume 2^{n}.

26 The pyramid has volume $\frac{1}{6}$. The 4 -dimensional pyramid has volume $\frac{1}{24}$ (and $\frac{1}{n!}$ in \mathbf{R}^{n})
$27 x=r \cos \theta, y=r \sin \theta$ give $J=r$. This is the r in polar area $r d r d \theta$. The columns are orthogonal and their lengths are 1 and r.
$28 J=\left|\begin{array}{ccc}\sin \phi \cos \theta & \rho \cos \phi \sin \theta & -\rho \sin \phi \sin \theta \\ \sin \phi \sin \theta & \rho \cos \phi \sin \theta & \rho \sin \phi \cos \theta \\ \cos \phi & -\rho \sin \phi & \theta\end{array}\right|=\rho^{2} \sin \phi$. This Jacobian is needed for triple integrals inside spheres. Those integrals have $\rho^{2} \sin \phi d \rho d \phi d \theta$.

29 From x, y to r, θ : $\left|\begin{array}{ll}\partial r / \partial x & \partial r / \partial y \\ \partial \theta / \partial x & \partial \theta / \partial y\end{array}\right|=\left|\begin{array}{cc}x / r & y / r \\ -y / r^{2} & x / r^{2}\end{array}\right|=\left|\begin{array}{cc}\cos \theta & \sin \theta \\ (-\sin \theta) / r & (\cos \theta) / r\end{array}\right|$ $=\frac{1}{r}=\frac{1}{\text { Jacobian in } \mathbf{2 7}}$. The surprise was that $\frac{d r}{d x}$ and $\frac{d x}{d r}$ are both $\frac{x}{r}$.

30 The triangle with corners $(0,0),(6,0),(1,4)$ has area $(6)(4) / 2=12$. Rotated by $\theta=60^{\circ}$ the area is unchanged. The determinant of the rotation matrix is

$$
J=\left|\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right|=\left|\begin{array}{rr}
1 / 2 & -\sqrt{3} / 2 \\
\sqrt{3} / 2 & 1 / 2
\end{array}\right|=1 .
$$

31 Base area $\|\boldsymbol{u} \times \boldsymbol{v}\|=10$, height $\|\boldsymbol{w}\| \cos \theta=2$, volume (10)(2) $=20$.
32 The volume of the box is det $\left[\begin{array}{rrr}2 & 4 & 0 \\ -1 & 3 & 0 \\ 1 & 2 & 2\end{array}\right]=20$, agreeing with Problem 31.
$33\left|\begin{array}{lll}u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3} \\ w_{1} & w_{2} & w_{3}\end{array}\right|=u_{1}\left|\begin{array}{cc}v_{2} & v_{3} \\ w_{2} & w_{3}\end{array}\right|-u_{2}\left|\begin{array}{cc}v_{1} & v_{3} \\ w_{1} & w_{3}\end{array}\right|+u_{3}\left|\begin{array}{cc}v_{1} & v_{2} \\ w_{1} & w_{2}\end{array}\right|$. This is $\boldsymbol{u} \cdot(\boldsymbol{v} \times \boldsymbol{w})$.
$34(\boldsymbol{w} \times \boldsymbol{u}) \cdot \boldsymbol{v}=(\boldsymbol{v} \times \boldsymbol{w}) \cdot \boldsymbol{u}=(\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{w}$: Even permutation of $(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w})$ keeps the same determinant. Odd permutations like $(\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{v}$ will reverse the sign.
$35 S=(2,1,-1)$, area $\|P Q \times P S\|=\|(-2,-2,-1)\|=\sqrt{2^{2}+2^{2}+1^{2}}=3$. The other four corners of the box can be $(0,0,0),(0,0,2),(1,2,2),(1,1,0)$. The volume of the tilted box with edges along P, Q, and R is $|\operatorname{det}|=1$.
36 If $(1,1,0),(1,2,1),(x, y, z)$ are in a plane the volume is det $\left[\begin{array}{lll}x & y & z \\ 1 & 1 & 0 \\ 1 & 2 & 1\end{array}\right]=x-y+z=0$.
The "box" with those edges is flattened to zero height. $37 \operatorname{det}\left[\begin{array}{ccc}x & y & z \\ 2 & 3 & 1 \\ 1 & 2 & 3\end{array}\right]=7 x-5 y+z$ will be zero when (x, y, z) is a combination of $(2,3,1)$ and $(1,2,3)$. The plane containing those two vectors has equation $7 x-5 y+z=0$. Volume $=$ zero because the 3 box edges out from $(0,0,0)$ lie in a plane.

38 Doubling each row multiplies the volume by 2^{n}. Then $2 \operatorname{det} A=\operatorname{det}(2 A)$ only if $n=1$.
$39 A C^{\mathrm{T}}=(\operatorname{det} A) I$ gives $(\operatorname{det} A)(\operatorname{det} C)=(\operatorname{det} A)^{n}$. Then $\operatorname{det} A=(\operatorname{det} C)^{1 / 3}$ with $n=4$. With $\operatorname{det} A^{-1}=1 / \operatorname{det} A$, construct A^{-1} using the cofactors. Invert to find A.

40 The cofactor formula adds 1 by 1 determinants (which are just entries) times their cofactors of size $n-1$. Jacobi discovered that this formula can be generalized. For $n=5$, Jacobi multiplied each 2 by 2 determinant from rows 1-2 (with columns $a<b$) times a 3 by 3 determinant from rows 3-5 (using the remaining columns $c<d<e$).

The key question is + or $-\operatorname{sign}$ (as for cofactors). The product is given $\mathrm{a}+$ sign when a, b, c, d, e is an even permutation of $1,2,3,4,5$. This gives the correct determinant +1 for that permutation matrix. More than that, all other P that permute a, b and separately c, d, e will come out with the correct sign when the 2 by 2 determinant for columns a, b multiplies the 3 by 3 determinant for columns c, d, e.

41 The Cauchy-Binet formula gives the determinant of a square matrix $A B$ (and $A A^{\mathrm{T}}$ in particular) when the factors A, B are rectangular. For (2 by 3) times (3 by 2) there are 3 products of 2 by 2 determinants from A and B (printed in boldface):

$$
\begin{aligned}
& {\left[\begin{array}{lll}
\boldsymbol{a} & \boldsymbol{b} & c \\
\boldsymbol{d} & \boldsymbol{e} & f
\end{array}\right]\left[\begin{array}{ll}
\boldsymbol{g} & \boldsymbol{j} \\
\boldsymbol{h} & \boldsymbol{k} \\
i & \ell
\end{array}\right] \quad\left[\begin{array}{lll}
\boldsymbol{a} & b & \boldsymbol{c} \\
\boldsymbol{d} & e & \boldsymbol{f}
\end{array}\right]\left[\begin{array}{ll}
\boldsymbol{g} & \boldsymbol{j} \\
h & k \\
\boldsymbol{i} & \boldsymbol{\ell}
\end{array}\right] \quad\left[\begin{array}{lll}
a & \boldsymbol{b} & \boldsymbol{c} \\
d & \boldsymbol{e} & \boldsymbol{f}
\end{array}\right]\left[\begin{array}{ll}
g & j \\
\boldsymbol{h} & \boldsymbol{k} \\
\boldsymbol{i} & \boldsymbol{\ell}
\end{array}\right]} \\
& \text { Check } A=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 4 & 7
\end{array}\right] \quad B=\left[\begin{array}{ll}
1 & 1 \\
2 & 4 \\
3 & 7
\end{array}\right] \quad A B=\left[\begin{array}{ll}
14 & 30 \\
30 & 66
\end{array}\right]
\end{aligned}
$$

Cauchy-Binet: $\quad(4-2)(4-2)+(7-3)(7-3)+(14-12)(14-12)=\mathbf{2 4}$
det of $A B: \quad(14)(66)-(30)(30)=\mathbf{2 4}$
42 A 5 by 5 tridiagonal matrix has cofactor $C_{11}=4$ by 4 tridiagonal matrix. Cofactor C_{12} has only one nonzero at the top of column 1 . That nonzero multiplies its 3 by 3 cofactor which is tridiagonal. So $\operatorname{det} A=a_{11} C_{11}+a_{12} C_{12}=$ tridiagonal determinants of sizes 4 and 3 . The number F_{n} of nonzero terms in $\operatorname{det} A$ follows Fibonacci's rule $F_{n}=F_{n-1}+F_{n-2}$.

