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12 Solutions to Exercises

Problem Set 2.1, page 41

1 The row picture for A = I has 3 perpendicular planes x = 2 and y = 3 and z = 4.
Those are perpendicular to the = and y and z axes: z = 4 is a horizontal plane at

height 4.

The column vectors are ¢ = (1,0,0) and j = (0,1,0) and kK = (0,0,1). Then b =
(2,3,4) is the linear combination 2¢ + 35 + 4k.

2 The planes in a row picture are the same: 2z = 4isx = 2,3y = 9isy = 3, and
4z = 16 is z = 4. The solution is the same point X = x. The three column vectors

are changed; but the same combination (coefficients z, produces b = 34), (4, 9, 16).

3 The solution is not changed! The second plane and row 2 of the matrix and all columns

of the matrix (vectors in the column picture) are changed.

4 If z=2thenx +y = 0and x — y = 2 give the point (x,y,2) = (1,—-1,2). If 2 =0
then z +y = 6 and x — y = 4 produce (5, 1, 0). Halfway between those is (3,0, 1).

5 If z,y, z satisfy the first two equations they also satisfy the third equation = sum of
the first two. The line L of solutions contains v = (1,1,0) and w = (3,1, %) and

u = %’u + %w and all combinations cv + dw with ¢+ d = 1. (Notice that requirement

c+d = 1. If you allow all ¢ and d, you get a plane.)

6 Equation 1 + equation 2 — equation 3 is now 0 = —4. The intersection line L of planes

1 and 2 misses plane 3 : no solution.

7 Column 3 = Column 1 makes the matrix singular. For b = (2, 3, 5) the solutions are
(z,y,72) = (1,1,0) 0r (0,1, 1) and you can add any multiple of (—1,0,1). b = (4,6, ¢)
needs ¢ = 10 for solvability (then b lies in the plane of the columns and the three

equations add to 0 = 0).

8 Four planes in 4-dimensional space normally meet at a point. The solution to Az =
(3,3,3,2) is « = (0,0,1,2) if A has columns (1,0,0,0),(1,1,0,0),(1,1,1,0),
(1,1,1,1). The equationsare x+ y+ 2+t =3,y + 2+t =3,z 4+t = 3,t = 2. Solve

them in reverse order !
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(@ Az = (18,5,0)and (b) Ax =(3,4,5,5).

Multiplying as linear combinations of the columns gives the same Ax = (18,5,0) and
(3,4,5,5). By rows or by columns: 9 separate multiplications when A is 3 by 3.

Az equals (14, 22) and (0,0) and (9, 7).

Az equals (z,y,x) and (0,0,0) and (3, 3, 6).

(@) « has n components and Ax has m components (b) Planes from each equation
in Az = b are in n-dimensional space. The columns of A are in m-dimensional space.

2043y+z+5t = 8is Ax = bwiththe 1 by 4 matrix A=[2 3 1 5]: onerow. The

solutions (z, y, z, t) fill a 3D “plane” in 4 dimensions. It could be called a hyperplane.

10 o 0 1 )
@ I= = “identity” (b) P = = “permutation”
0 1 10
_ 0 1 _ -1 0
90° rotation from R = , 180° rotation from R? = =1
-1 0 0 —1
0 1 0 y 0 0 1 x
P =10 0 1| produces || and @ = |1 0 0] recovers |y |. Q is the

1 00 x 010 z
inverse of P. Later we writte QP = Tand Q = P~ 1.

- 1 00
10
E= and F = [—-1 1 0] subtract the first component from the second.
-1 1
- 0 0 1
10 0 100 3 3
E=|0 1 olandE*=| o0 1 0o|,Ev= |4]| and E"1Ev recovers |4 |.
1 0 1 -1 0 1 8 )
1 0 . . 0 0 . .
P = projects onto the z-axis and P, = projects onto the y-axis.
0 0 0 1

5 5
The vector v = projects to Pyv = and P,Piv =
7 0
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1vV2 —V2

= - rotates all vectors by 45° . The columns of R are the results
2lv2 V2
from rotating (1, 0) and (0, 1)!
xr
The dot product Az = [1 4 5] |y | = (1by3)(3by1) is zero for points (z,y, 2)
z
on a plane in three dimensions. The 3 columns of A are one-dimensional vectors.
A=1[12; 3 4]landxz =[5 —2] or[5 ; —2]andb=[1 7] or[1 ; 7].
r =b— Axxprintsas two zeros.
Asxv=[3 4 5] and v’ * v = 50. But v % A gives an error message from 3 by 1
times 3 by 3.
ones(4,4) x ones(4,1) = column vector [4 4 4 4]; Bxw =[10 10 10 10]".
The row picture has two lines meeting at the solution (4, 2). The column picture will
have 4(1,1) 4+ 2(—2,1) = 4(column 1) + 2(column 2) = right side (0, 6).
The row picture shows 2 planes in 3-dimensional space. The column picture is in
2-dimensional space. The solutions normally fill a line in 3-dimensional space.

The row picture shows four lines in the 2D plane. The column picture is in four-

dimensional space. No solution unless the right side is a combination of the two columns.

.65 | The components add to 1. They are always positive.

Uy = . and us = .
.3 .35 | Their components still add to 1.
_ 8 3| |6
u7 and v; have components adding to 1; they are close to s = (.6, .4). =
2 .7 4
. 8 3
= steady state s. No change when multiplied by .
4 2.7
8 3 4 S5+u S—u+v S5-—w
M=1|15 9|=|5-u—-v 5 5+u+tol|;Ms(1,1,1)=(151515);
6 7 2 5+v Sb4+u—v H—u

My(1,1,1,1) = (34,34, 34, 34) because 1 + 2 + - - - + 16 = 136 which is 4(34).
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32 A is singular when its third column w is a combination cu + dv of the first columns.
A typical column picture has b outside the plane of u, v, w. A typical row picture has

the intersection line of two planes parallel to the third plane. Then no solution.

33 w = (5,7) is bu + Tv. Then Aw equals 5 times Aw plus 7 times Av. Linearity
means : When w is a combination of w and v, then Aw is the same combination of Au

and Av.

2 1 0 o] [x]| [1] (] [4]
-1 2 =1 0 |9 2 ) T 7

34 = has the solution = .
0 -1 2 —1 X3 3 X3 8

L 0 0 —1 2_ _1'4_ _4_ _1'4_ _6_

35 = (1,...,1)gives Se = sum of each row = 1+---49 = 45 for Sudoku matrices.
6 row orders (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1) are in Section 2.7.
The same 6 permutations of blocks of rows produce Sudoku matrices, so 6* = 1296

orders of the 9 rows all stay Sudoku. (And also 1296 permutations of the 9 columns.)

Problem Set 2.2, page 53

1 Multiply equation 1 by Z5; = 12—0 = 5 and subtract from equation 2 to find 2x + 3y = 1

(unchanged) and —6y = 6. The pivots to circle are 2 and —6.

2 —6y = 6 givesy = —1. Then 2z + 3y = 1 gives x = 2. Multiplying the right side
(1,11) by 4 will multiply the solution by 4 to give the new solution (z, y) = (8, —4).

3 Subtract —% (or add %) times equation 1. The new second equation is 3y =3. Then

y=1and x=5. If the right side changes sign, so does the solution: (x,y)= (-5, —1).

4 Subtract £ = < times equation 1 from equation 2. The new second pivot multiplying y
isd— (cb/a) or (ad — be)/a. Theny = (ag — c¢f)/(ad — be). Notice the “determinant

of A” = ad — be. It must be nonzero for this division.
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6x + 4y is 2 times 3z + 2y. There is no solution unless the right side is 2 - 10 = 20.
Then all the points on the line 3z + 2y = 10 are solutions, including (0,5) and (4, —1).

The two lines in the row picture are the same line, containing all solutions.

Singular system if b = 4, because 4x + 8y is 2 times 2z + 4y. Then g = 32 makes the
lines 2x + 4y = 16 and 4x + 8y = 32 become the same: infinitely many solutions like
(8,0) and (0, 4).

If a = 2 elimination must fail (two parallel lines in the row picture). The equations
have no solution. With a = 0, elimination will stop for a row exchange. Then 3y = —3
givesy = —1 and 4x + 6y = 6 gives x = 3.

If & = 3 elimination must fail: no solution. If & = —3, elimination gives 0 = 0 in
equation 2: infinitely many solutions. If £ = 0 a row exchange is needed: one solution.

On the left side, 62 — 4y is 2 times (3x — 2y). Therefore we need b, = 2b; on the right
side. Then there will be infinitely many solutions (two parallel lines become one single
line in the row picture). The column picture has both columns along the same line.
The equation y = 1 comes from elimination (subtract z + y = 5 from = + 2y = 6).
Thenz =4and 5z — 4y =20 — 4 = ¢ = 16.

(@) Another solution is %(m +X,y+Y, 2+ 7). (b) If 25 planes meet at two points,
they meet along the whole line through those two points.

Elimination leads to this upper triangular system; then comes back substitution.

2v +3y + 2z=38 =2
y+3z=4 gives y =1 Ifazeroisat the start of row 2 or row 3,

82=138 z =1 thatavoids a row operation.

2z — 3y =3 20 =3y =3 20 —3y=3 x=3
dr —by+ z=7 gives y+ z=1 and y+ z=1 and y=1

20— y—3z2=5 2y+32=2 —52=0 z2=0
Here are steps 1,2, 3: Subtract 2 x row 1 from row 2, subtract 1 x row 1 from row 3,

subtract 2 x row 2 from row 3
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Subtract 2 times row 1 from row 2 to reach (d—10)y—z = 2. Equation (3) isy—z = 3.
If d = 10 exchange rows 2 and 3. If d = 11 the system becomes singular.

The second pivot position will contain —2 — b. If b = —2 we exchange with row 3.
If b = —1 (singular case) the second equation is —y — z = 0. But equation (3) is the

same so there is a line of solutions (x, y, z) = (1,1, —1).

Oz + 0y +2z=4 Exchange Oz 4+ 3y +4z=14
Example of
r+2y+2z2=5 but then r+2y+22=5
(8) 2 exchanges (b)
Oz +3y+42=6 breakdown 0z +3y+42=6
(exchange 1 and 2, then 2 and 3) (rows 1 and 3 are not consistent)

If row 1 = row 2, then row 2 is zero after the first step; exchange the zero row with row

3 and row 3 has no pivot. If column 2 = column 1, then column 2 has no pivot.

Example © + 2y + 3z = 0, 4x + 8y + 12z = 0, 5x + 10y + 15z = 0 has 9 different
coefficients but rows 2 and 3 become 0 = 0: infinitely many solutions to Az = 0 but

almost surely no solution to Az = b for a random b.

Row 2 becomes 3y — 4z = 5, then row 3 becomes (¢ + 4)z =t — 5. If ¢ = —4 the
system is singular—no third pivot. Then if ¢ = 5 the third equation is 0 = 0 which
allows infinitely many solutions. Choosing z = 1 the equation 3y —4z = 5 givesy = 3
and equation 1 gives x = —9.

Singular if row 3 is a combination of rows 1 and 2. From the end view, the three planes
form a triangle. This happens if rows 1+2 =row 3 on the left side but not the right side:
z4+y+2=0,x—2y—z=1, 2c—y=4. No parallel planes but still no solution. The

three planes in the row picture form a triangular tunnel.

(a) Pivots 2, %, %,% in the equations 2z + y = 0, %y 4+ 2z =0, %z +t=0, %t =5
after elimination. Back substitution gives ¢t = 4,z = =3,y = 2,z = —1. (b)) If
the off-diagonal entries change from +1 to —1, the pivots are the same. The solution is
(1,2,3,4) instead of (—1,2,-3,4).

The fifth pivot is g for both matrices (1’s or —1’s off the diagonal). The nth pivot is

n+1
peat
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If ordinary elimination leads to x + y = 1 and 2y = 3, the original second equation
could be 2y + ¢(z +y) = 3+ ¢ for any . Then ¢ will be the multiplier to reach 2y = 3,
by subtracting ¢ times equation 1 from equation 2.

a 2
Elimination fails on if a = 2 or a = 0. (You could notice that the determinant
a a

a’? —2aiszerofora =2anda = 0.)
a = 2 (equal columns), a = 4 (equal rows), a = 0 (zero column).

Solvable for s = 10 (add the two pairs of equations to get a + b+ ¢+ d on the left sides,
12 and 2 + s on the right sides). So 12 must agree with 2 + s, which makes s = 10.

1 3 0 4
The four equations for a, b, ¢, d are singular! Two solutions are and :
17 2 6
(11 0 0] (1 1 0 0]
1 010 0 -1 1 0
A= and U =
0 0 11 0 0 1 1
_0 1 0 1_ _0 0 0 ()_

Elimination leaves the diagonal matrix diag(3,2,1) in 3x = 3,2y = 2,z = 2. Then
r=1y=12=2.
A(2,:) = A(2,:) — 3% A(1,:) subtracts 3 times row 1 from row 2.

The average pivots for rand(3) without row exchanges were %, 5,10 in one experiment—
but pivots 2 and 3 can be arbitrarily large. Their averages are actually infinite ! With
row exchanges in MATLAB’s lu code, the averages .75 and .50 and .365 are much
more stable (and should be predictable, also for randn with normal instead of uniform

probability distribution for the numbers in A).
If A(5,5) is 7 not 11, then the last pivot will be 0 not 4.

Row j of U is a combination of rows 1, ..., 5 of A (when there are no row exchanges).
If Az = 0then Ux = 0 (not true if b replaces 0). U just keeps the diagonal of A when

A is lower triangular.

The question deals with 100 equations Az = 0 when A is singular.
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(@) Some linear combination of the 100 rows is the row of 100 zeros.
(b) Some linear combination of the 100 columns is the column of zeros.

(c) A very singular matrix has all ones: A = ones(100). A better example has 99
random rows (or the numbers 1¢, ..., 100° in those rows). The 100th row could
be the sum of the first 99 rows (or any other combination of those rows with no

Zeros).

(d) The row picture has 100 planes meeting along a common line through 0. The

column picture has 100 vectors all in the same 99-dimensional hyperplane.

Problem Set 2.3, page 66

100 100 100] (010 010
1 Enq=|-510|,E2=]010|,P=]001 100[{=1]001
001 071 010|001 100

2 E32F91b = (1,-5,-35) but E51 E32b = (1,—5,0). When Es3, comes first, row 3

feels no effect from row 1.

1 00 1 00 1 0

3 -4 1 0{,|0 1 0f,]0 1
0 0 1 2 01 0 —2
Those E’s are in the right order to give M A = U.

o

1 0 0
M=E32E31E21 = [—4 1 0

— o
—_
o
|
[\
=

1 1 1 1
4 Elimination on column 4: b = | E—2>1 —4 E§1 —4 %2 —4 The
0 0 2 10

original Az = b has become Uz = ¢ = (1,—4,10). Then back substitution gives

z=—5,y =3,z = 3. This solves Az = (1,0,0).

5 Changing a3 from 7 to 11 will change the third pivot from 5 to 9. Changing ass from

7 to 2 will change the pivot from 5 to no pivot.



20

6

10

11

12

Solutions to Exercises

2 3 7 1 4
Example: [2 3 7 3| = |4 . If all columns are multiples of column 1, there
2 3 7| |-1 4

is no second pivot.

To reverse Fs1, add 7 times row 1 to row 3. The inverse of the elimination matrix

1 00 1 0 0
E=| 0 1 o|isE~'= |0 1 0].Multiplication confirms FE~! =1I.
-7 0 1 7 0 1
a b a b
M = and M* = . det M* = a(d — €b) — b(c — fa)
c d c—40a d—10b

reduces to ad — be! Subtracting row 1 from row 2 doesn’t change det M.

100

M= 0 0 1]|.Afterthe exchange, we need F5; (not F21) to act on the new row 3.
-1 10
1 0 1 1 0 1 2 01

Eis=|0 1 0|;l0 1 0|;Fs1F13=|0 1 0] .Teston the identity matrix!

0 0 1 1 0 1 1 0 1
1 2 2
An example with two negative pivotsis A = |1 1 2. The diagonal entries can
1 2 1

change sign during elimination.

9 8 7| rowsand 1 2 3

Thefirstproductis |6 5 4| alsocolumns Thesecondproductis |0 1 —2].

3 2 1 reversed. 0o 2 -3
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13 (a) F times the third column of B is the third column of EB. A column that starts
at zero will stay at zero. (b) E could add row 2 to row 3 to change a zero row to a

nonzero row.

14 Es has —ly =1, E3p has —l30=2, Ey3 has —{43=2. Otherwise the E’s match 1.

-1 -4 -7 -1 -4 -7
15a,;=2i—3j:A=| 1 -2 -5 = | 0 —6 —12|. The zero became —12,
3 0 -3 0 —12 —-24
1 0 0

an example of fill-in. To remove that —12, choose E3o = [0 1 0
0 -2 1
Every 3 by 3 matrix with entries a;; = ci + dj is singular!
16 (@) Theagesof X andY arezandy: x —2y =0andz +y = 33; x = 22and y = 11
(b) The liney = ma + ccontainsx =2,y =5andz =3,y =7when2m +c¢=5

and 3m + ¢ = 7. Then m = 2 is the slope.
at+ b+ c= 4

17 The parabola y = a+ bx + ca? goes through the 3 given pointswhen g+ 2p+ 4¢ = 8 .
a+ 3b+9c =14
Then a =2, b =1, and ¢ = 1. This matrix with columns (1, 1,1), (1,2,3), (1,4,9) is

a “Vandermonde matrix.”

1 0 0 1 0 0 1 0 0 1 0 0
18 EF=|a 1 0|, FE=| a 1 0|, E*=|2¢ 1 0|, F*=|0 1 0
b ¢ 1 b+ac ¢ 1 26 0 1 0 3¢ 1
0 1 0 0 0 1
19 PQ= |0 0 1]|.Intheoppositeorder, tworowexchangesgiveQP =11 0 0],
1 00 010

P2 = . If M exchanges rows 2 and 3 then M2 = I (also (—M)? = I). There are

a b
many square roots of I: Any matrix M = has M? = I if a? + bc = 1.
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1 0 1 2 4
20 (a) Each column of EB is E times a column of B (b) =
1 1 1 2 4
1 2 ) .
. All rows of EB are multiplesof |1 2 4/[.
2 4 8 -
1 0 1 1] . 1 1 2 1
21 No. E = and F' = give EF = but FE =
1 1 0 1 1 2 1 1

22 (a) Zagjl‘j (b) as1 — a1 (C) as1 — 2a11 (d) (EAac)1 = (Aac)l = Za1j$j.
23 E(FEA) subtracts 4 times row 1 from row 2 (EFEA does the row operation twice).

AFE subtracts 2 times column 2 of A from column 1 (multiplication by E on the right

side acts on columns instead of rows).

2 3 1 2 3 1 ) 2014320 = 1
24 [A b} = — . The triangular system is
4 1 17 0 —5 15 —bxy = 15
Back substitution gives 1 = 5 and 25, = —3.
25 The last equation becomes 0 = 3. If the original 6 is 3, then row 1 + row 2 = row 3.

Then the last equation is 0 = 0 and the system has infinitely many solutions.

26 (a) Add two columnsband b™ to get [A b b*]. The example has
1 410 1 4 1 0 -7 4

N —Sx= and z* =
2 7 0 1 0 -1 -2 1 2 -1

27 (a) No solution if d=0and ¢#0 (b) Many solutions if d=0=c. No effect from «, b.

28 A=Al = A(BC) = (AB)C = IC = C. That middle equation is crucial.

(1 0 0 0] 1 0 0 0]

-1 1 0 0 01 0 O
29 E= subtracts each row from the next row. The result

0 —1 1 0 01 1 0

[0 0 =1 1] 01 2 1]

still has multipliers = 1 in a 3 by 3 Pascal matrix. The product M of all elimination
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1 0 o0 0]
.. |-11 00 . L -
matrices is . This “alternating sign Pascal matrix” is on page 91.
1 -2 1 0
-1 3 -3 1]

1 0
30 @E=A""1= { } will reduce row 2 of EM to [2 3].
-1 1

1
(b) Then F = B~! = will reduce row 1 of FEM to [1 1].
0 1

(c) Then E = A~ twice will reduce row 2 of EEFEM to [0 1]

(d) Now EEFEM = B. Move E’s and F’s to get M = ABAAB. This question
focuses on positive integer matrices M with ad — bc = 1. The same steps make the

entries smaller and smaller until A is a product of A’s and B’s.

1 | 1 | 1 |
a 1 0 1 0 1
31 Eo; = , Bsp = y Bz = ;
0 0 1 0 b 1 0 0 1
(00 0 1] 000 1| 000 ¢ 1]
. i
a 1
Ey3 E39 Eoy =
ab b 1
_abc bccl_

Problem Set 2.4, page 77

1 If all entries of A, B,C, D are 1, then BA = 3 ones(5) is 5 by 5; AB = 5 ones(3) is
3by 3; ABD = 150nes(3,1) is3 by 1. DC and A(B + C') are not defined.

2 (a) A (column 2 of B) (b) (Row 1of A) B (c) (Row 3 of A)(column 5 of B)
(d) (Row 1 of C)D(column 1 of E). (Part (c) assumed 5 columns in B)
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AB + AC isthe sameas A(B + C) =

8
] . (Distributive law).
9

00
A(BC) = (AB)C by the associative law. In this example both answers are ] .
00

Column 1 of AB and row 2 of C are zero (then multiply columns times rows).

1 2b 1 nb 4 4 _2” 2™
(@) A% = and A" = . (b) A% = and A" = :
0 1 0 1 0 0 0 O
10 4 -16 2
(A+B)? = = A+ AB+ BA+ B2 But A2 + 2AB + B? = .
6 6 3 0
(@ True  (b) False (c) True (d) False: usually (AB)?> = ABAB # A%2B2,

The rows of D A are 3 (row 1 of A) and 5 (row 2 of A). Both rows of £ A are row 2 of A.
The columns of AD are 3 (column 1 of A) and 5 (column 2 of A). The first column of

AFE is zero, the second is column 1 of A + column 2 of A.

a a+b
AF = and E(AF) equals (EA)F because matrix multiplication is
c c+d
associative.
a+c b+d a+c b+d
FA = and then E(FA) = . E(FA)isnot
c d a+2c b+2d

the same as F'(F A) because multiplication is not commutative: EF # FE.
Suppose E A does the row operation and then (EA) F' does the column operation (be-

cause F' is multiplying from the right). The associative law says that (EA)F = E(AF)

so the column operation can be done first !
0 0 1

@ B=4I () B=0 (c) B=|0 1 0| (d)EveryrowofBisl,O0,O0.
1 0 0
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a 0 a b
13 AB = = BA = givesb = ¢ = 0. Then AC = CA gives
c 0 0 0

a = d. The only matrices that commute with B and C (and all other matrices) are

multiplesof I: A = al.

14 (A-B)?=(B-A)?=AA-B)-BA—-B)=A?>-AB—-BA+B? Ina
typical case (when AB # BA) the matrix A? — 2AB + B? is different from (A — B)2.

15 (a) True (A? is only defined when A is square).
(b) False (if A ism by n and B isn by m, then AB is m by m and BA is n by n).
(c) True by part (b).
(d) False (take B = 0).

16 (a) mn (use every entry of A)  (b) mnp = pxpart (8) (c) n* (n? dot products).

17 (a) Useonly column2of B (b) Useonlyrow 2 of A (c)—(d) Use row 2 of first A.

ROWQOfAB:[l 0 0] Row20fA2:[o 1}

0
Column2of AB = [
0

Row 2 of 43 = [ 3 =2 }

111 1 -1 1
18 A=|1 2 2 |hasa;; =min(i,j). A=| -1 1 —1 |hasa;; = (-1)" =
1 2 3 1 -1 1
/1 1/2 1/3
“alternating sign matrix”. A = | 2/1 2/2 2/3 | hasa;; = i/j. This will be an
3/1 3/2 3/3
4T
example of a rank one matrix : 1co|umn[ 1 2 3 multiplieslrow[ 1 % % }

19 Diagonal matrix, lower triangular, symmetric, all rows equal. Zero matrix fits all four.

20 (a) ai: (b) €31 = aszi/an (c) az2 — <&> a2 (d) a2 — <%> ai2.

ail a11
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(0040 | (0008 |
00014 0000
21 A% = , A3 = , A* = zero matrix for strictly triangular A.
0000 0000
0000 10000 |
-x_ -Qy_ _42_ _St_
Y 2z 4t , 0
Then Av = A = , A%v = , Adv = , Alv =0.
z 2t 0 0
|t ] | 0 | | 0 | | 0 |
0 1 1 -1 1 1 0 0
22 A= has A2 = —I; BC = = :
-1 0 1 -1 1 1 0 0
0 0 1 -1 .
DE = = = —FED. You can find more examples.
1 0] |-1 0 0 1
0 1
23 A = has A2 = 0. Note: Any matrix A = column times row = uv™ will
0 0
0 10 0 0 1
have A2 = woTuvT = 0ifvTu=0. A= | 0 0 1 {hasd?2= |0 0 0
0 0 O 0 0 0

but A% = 0; strictly triangular as in Problem 21.

on 9n 1 MR a® a"1b
24 (Ay)" = , (Ag)m =2"" , (A3)n =
0 1 1 1 0 0

abclOOa[lOO]d{Olo}C{OOI}
25 |d e fll0 1 0|=|d +le T
g h i]|]0 0 1] |g h 7
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1 0 33 0 0 0 O
Columnsof A4
2[330]4—4[121]26604—484—
times rows of B
2 1 6 6 0 1 2 1
3 30
10 14 4| =AB.
7 8 1

27 (a) (row 3 of A) - (column 1 or 2 of B) and (row 3 of A) - (column 2 of B) are all zero.

T 0 = « T 0 0 =«
() |z [0 z z]=|0 2 2|and|z| [0 0 z]=|0 0 =z|:bothupper.
0 0 0 0 T 0 0 =
A times B
wons L {12 | — (L)L)
with cuts
4 cols 2 rows 2 rows — 4 cols 3 cols — 3 rows
1 0 0 1 0 0
29 Foy=1|1 1 olandE3; =] 0 1 0] producezerosinthe 2,1 and 3,1 entries.
0 0 1 -4 0 1
1 0 0 2 1 0
Multiply E’sto get £ = F31Fo = 1 1 0|. ThenEA = [0 1 1| isthe
-4 0 1 01 3

result of both E’s since (E3; F21)A = E31(E2 A).

— 0 1 1 1
30 In29, c= , D= , D—cb/a= in the lower corner of EA.
8 5 3 1 3
a1 A —-Bl| | Ax — By | real part Complex matrix times complex vector
B Al |y Bx + Ay | imaginary part. needs 4 real times real multiplications.

32 Atimes X =[x a3 3] will be the identity matrix I = [Axzy Azy Axs].
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3 3 1 0 0
3b=|5|givese =3z, +5my+8x3 = | 8|; A= |—1 1 0] will have
8 16 0 -1 1

those 1 = (1,1,1), 2 = (0,1,1), 23 = (0,0, 1) as columns of its “inverse” A1,

a+b a+b

34 Ax ones = [ ] agrees with ones xA =

a-+c b—l—b] whenbd = ¢

c+d c+d a+c b+d| anda=d

b 1 1
Then A = . These are the matrices that commute with .
b a 1 1
_0 1 0 1_ _2 0 2 0_ aba,ada cba,cda These show
1 01 0 0 2 0 2 bab, bcb dab, dcb 16 2-step
35 § = 5 52 - )
01 01 2 0 2 0 abc,adc cbc,cdc  pathsin
|1 0 1 0] |0 2 0 2| bad bcd dad,dcd the graph

36 Multiplying AB =(m by n)(n by p) needs mnp multiplications. Then (AB)C needs
mpq more. Multiply BC = (n by p)(p by g) needs npq and then A(BC') needs mnyq.

(@) If m,n,p,qare 2,4,7,10 we compare (2)(4)(7) + (2)(7)(10) = 196 with the
larger number (2)(4)(10) + (4)(7)(10) = 360. So AB first is better, we want to

multiply that 7 by 10 matrix by as few rows as possible.

(b) If u,v,w are N by 1, then (uTv)w™ needs 2N multiplications but uT (vw™)
needs N2 to find vw™ and N2 more to multiply by the row vector w™. Apologies

to use the transpose symbol so early.

(c) We are comparing mnp + mpq with mng + npq. Divide all terms by mnpq:
Now we are comparing ¢~ + n~! with p=* + m~!. This yields a simple im-
portant rule. If matrices A and B are multiplying v for ABwv, don’t multiply the
matrices first. Better to multiply Bwv and then A(Bwv).
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37 The proof of (AB)e = A(Bc) used the column rule for matrix multiplication.
“The same is true for all other columns of C.”

Even for nonlinear transformations, A(B(c)) would be the “composition” of A with

B (applying B then A). This composition A o B is just written as AB for matrices.

One of many uses for the associative law: The left-inverse B = the right-inverse C

because B = B(AC) = (BA)C = C.

38 (a) Multiply the columns ay, ..., a,, by the rows a{,...,a} and add the resulting

matrices.

(b) ATCA = ciaial + -+ + cpa,,al,. Diagonal C makes it neat.

Problem Set 2.5, page 92

7 —4
and C~! =
-5 3

[N

1 A= and B~1 =

S &=

-1

W=
N~

2 For the first, a simple row exchange has P> = I so P~' = P. For the second,

0 0 1
P 1=11 0 o0].Always P~!="*“transpose” of P, coming in Section 2.7.

0 1 0
T .5 t —.2 1 5 =2

3 = and = so A7l = —
y —2 2 1 101 9 1

. This question

solved AA~! = I column by column, the main idea of Gauss-Jordan elimination. For
1

1
a different matrix A = , you could find a first column for A=! but not a
00

second column—so A would be singular (no inverse).

4 The equations are x + 2y = 1 and 3x + 6y = 0. No solution because 3 times equation

1 gives 3z + 6y = 3.
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a
5 An upper triangular U withU? = T'isU =

for any a. And also —U.
0 -1

6 (a) Multiply AB = AC by A~ tofind B = C (since A is invertible) (b) As long as

—x

1 1
B—Chastheform[ y],wehaveABzACforAz [ ]
1 1

-y
7 (@) In Az = (1,0,0), equation 1 + equation 2 — equation 3is 0 = 1 (b) Right

sides must satisfy by + by = b3 (c) Row 3 becomes a row of zeros—no third pivot.

8 (a) The vector x = (1,1,—1) solves Az = 0 (b) After elimination, columns 1

and 2 end in zeros. Then so does column 3 = column 1 + 2: no third pivot.

9 Yes, B is invertible (A was just multiplied by a permutation matrix P). If you exchange
rows 1 and 2 of A to reach B, you exchange columns 1 and 2 of A~! to reach B~'. In

matrix notation, B = PAhas B~ = A—1p—1 = A—1P for this P.

[0 0 0 1/5 [ 3 2 0 0]
0 0 1/4 0 -4 3 0 0] (inverteach
10 At = and B~ =
0 1/3 0 0 0O 0 6 —5| blockofB)
/20 0 0 | 0 0 =7 6]
11 (a) If B = — A then certainly A + B = zero matrix is not invertible.

12

13

14

15

(b) A= and B = are both singular but A + B = [ is invertible.

0 1

Multiply C = AB on the left by A~! and on the right by C~!. Then A= = BC~!.

M~1 = C71B~1A~! so multiply on the left by C and the right by A : B~ =
CM~'A.

-1
1 0 1 0

B l=4"1 [ ] = A1 [ ] : subtract column 2 of A—! from column 1.
1 1 -1 1

If A has a column of zeros, so does BA. Then BA = I isimpossible. Thereisno A~*.
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16 a b d —b ad — bc 0 The inverse of each matrix is
¢ d| |-c a 0 ad—be| the other divided by ad — be
1 1 1 1
17 E3pEs1FE0 = 1 1 -1 1 =|-1 1 =F
-1 1 -1 1 1 0 —1 1
1
Reverse the order and change —1to +1 to getinverses By,  E5' Ex' = [1 1 =
1 1 1

L = E~'. Notice that the 1°s are unchanged by multiplying inverses in this order.
18 A2B = I can also be written as A(AB) = I. Therefore A~! is AB.

19 The (1,1) entry requires 4a — 3b = 1; the (1, 2) entry requires 2b —a = 0. Then b =

U=

anda:%. Forthe5by5case5a—4b=1and2b=agiveb:%anda:%.

20 A xones(4,1) = A (column of 1°s) is the zero vector so A cannot be invertible.

21 Six of the sixteen 0 — 1 matrices are invertible: I and P and all four with three 1’s.

13 10| [1 3 1 o 1 0 7 -3
22 — — =[1 A1
2 7 0 1 0 1 -2 1 0 1 -2 1
1410 1 4 10 1 0 -3 4/3
- - =[I A7'].
390 1 0 -3 -3 1 0 1 1 —1/3
2 1 0[1 0 0 2 1 0 10 0]
23[AT=|1 2 1]0 1 0| =0 3/2 1|-1/2 1 0| —
01 2|0 0 1 0 1 2 00 1
2 1 0 1 00 2 1 0 1 0 0

—_

0 3/2 1]-1/2 o = [0 3/2 0|-3/4 3/2 -3/4|—
0 0 4/3| 1/3 —-2/3 1 0 0 4/3] 1/3 —2/3 1
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2 0 0| 3/2 -1 1/2 10 0| 3/4 —1/2 1/4

0 3/2 0|-3/4 3/2 —3/4| =0 1 0]-1/2 1 —1/2] =

0 0 4/3| 1/3 —2/3 1 00 1| 1/4 —1/2 3/4

1A

(1 a b 100 1 a010-b] [1 001 —a a—b
2400 1 ¢010[=]010071-|=]0100 1 -l

001001 (00100 1] [0010 o0 1

] 1

2 1 1 3 -1 -1 1 2 —1 —1|[1 0
25121=i—1 3 —1|; Bl|1|=|-1 2 —1||1|=]0

11 2 1 -1 3 1 1 -1 2| |1 0

so B! does not exist.

1 0] (1 2 1 2
-2 1 2 6 0 2

1
Multiply by D = [
0

10
-2 1

26 EQlA: . E12E21A:

1 -1 10
A= .
0 1] [0 2

0
] toreach DE5E,1 A = I. Then A"l = DFE5FE5 =

1/2
1 6 —2
2[—2 1
1 0 0 2 -1 0
27 A~'=|_2 1 —3| (noticethesignchanges); A=t = |—-1 2 —1
0 0 1 0 -1 1

0 210 2 2 01 2 0 -1 1 10 —-1/2 1/2
8 — — — .
2 2 01 0 210 02 10 0 1 1/2 0

This is {] A—l} : row exchanges are certainly allowed in Gauss-Jordan.



Solutions to Exercises 33

29

30

31

32

33

34

35

36

37

38

(@) True (If A has a row of zeros, then every AB has too, and AB = I is impossible).
(b) False (the matrix of all ones is singular even with diagonal 1’s.

(c) True (the inverse of A1 is A and the inverse of A2 is (A71)2).
a 0-b
1

Elimination produces the pivotsa anda —banda—b. A~ = ———
ala —b)

—a a 0]-
0—a a

The matrix C'is not invertibleifc =0orc=7o0rc = 2.

(11 0 0] 1] [2]
0110 1 2 _
A7l = andx = A~! = . When the triangular A alternates
0 0 1 1 1 2
100 0 1] 1] 1]

1 and —1 on its diagonals, A~! has 1’s on the diagonal and first superdiagonal.
x=(1,1,...,1) hasx = Px = Qx so (P — Q)x = 0. Permutations do not change

this all-ones vector.

I 0 AL 0 -D I
and and .
-C I -D-'cA~t D! I 0
A can be invertible with diagonal zeros (example to find). B is singular because each

row adds to zero. The all-ones vector x has Bx = 0.

The equation LDLD = I says that LD = pascal (4, 1) is its own inverse.

hilb(6) is not the exact Hilbert matrix because fractions are rounded off. So inv(hilb(6))
is not the exact inverse either.

The three Pascal matrices have P = LU = LL™ and then inv(P) = inv(LT)xinv(L).
Az = b has many solutions when A = ones (4,4) = singular and b = ones (4, 1).
A\b in MATLAB will pick the shortest solution = (1,1,1,1)/4. This is the only
solution that is a combination of the rows of A (later it comes from the “pseudoinverse”
AT = pinv(A) which replaces A~! when A is singular). Any vector that solves Az = 0

could be added to this particular solution .
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39

40

41

The inverse of A =

o O O

isA-1 =

o o O

Solutions to Exercises

ab abc
b be .
. (This would
1 c
0 1 }

be a good example for the cofactor formula A= = CT/ det A in Section 5.3)

1

a 1
b 0 1
c 0

0 1)

1
d

o O O

(&

1
0

1

1

1
fo1]

C

1
d

(&

1
1]

In this order the multipliers a, b, ¢, d, e, f are unchanged in the product (important for

A = LU in Section 2.6).

4 by 4 still with 77, = 1 has pivots 1, 1,1, 1; reversing to 7% = UL makes T}, = 1.

1
-1
0

0

-1
2
-1
0

0
-1
2
-1

0
0
-1
2

and T-1=

4
3
2

1

W W

NN N

42 Add the equations Cx = b to find 0 = by + by + bs + by. So C' is singular. Same for

43

44

Fx =0.

The block pivots are A and S = D — CA™'B (and d—cb/a is the correct

second pivot of an ordinary 2 by 2 matrix).
10

Schur complement S =

0

1

4

4 2

The example problem has

ERI

-5 —6
—6 =5

Inverting the identity A(I + BA) = (I + AB)A gives (I + BA)"1A=t = A~Y(I +
AB)~1. So I+ BAand I+ AB are both invertible or both singular when A is invertible.

(This remains true also when A is singular: Chapter 6 will show that AB and B A have

the same nonzero eigenvalues, and we are looking here at the eigenvalue —1.)
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Problem Set 2.6, page 104

o 1 0] . 1 0] |=x 5
1 /51 = 1 multipliedrow 1; L = times Ux = =
1 1 1 1 Yy 2

=cis

1 1 T 5—
Az =b= [ ] [ ] = [ . In letters, L multiplies Ux = cto give Az = b.
7

. 1 0 C1 5 ) .. .
2 Le=bis = , solved by ¢ = as elimination goes forward.
1 1f |e 7 2
|11 x 5 31 . N
Uz =cis = , solved by « = in back substitution.
0 1| |y 2 2

3 031 = 1land ¢35 = 2 (and ¢33 = 1): reverse steps to get Au = b from Uz = c:

1times (x+y—+2z = 5)+2times (y+2z = 2)+1times (z = 2) gives z+3y+6z = 11.

1 2 10 2 1 0
5 FEA=| 0 1 0 4 2|=1]0 4 2|=U.
-3 0 1|16 3 5 0 0 5

1 2 1 0 2 1 0
WithE-ltasL, A=LU= |0 1 0 4 2/l=10 4 2|.
301 0 0 5 6 3 5

—_

1 1 1 0 0
=U. ThenA = |2 1 0| Uis

1 1

6 1 21 |A=

o

0 2 3
0-2 1 0 01 0 0-6 0 2 1

the same as E,,' E5,' U = LU. The multipliers £3; = 3, = 2 fall into place in L.



36 Solutions to Exercises

1 1 1 1 00
7 E3bE31FE A = 1 1 -2 1 2 2 2. Thisis
-2 1 -3 1 1 _3 4 5_
10 1 (1 0 0]
0 2 0| =U.Putthose multipliers2,3,2into L. ThenA= |2 1 0| U= LU.
0 0 2 13 2 1)
1 1
8 B =FEspFE3nkEyn=| —a 1 ismixedbut Lis E5' E5' B3 = |a 1
ac—b —c 1 b ¢ 1
110 1 de g| d=1e=1,thent =1
9 2by2:d=0notallowed; |1 1 2(=|¢ 1 f h| f=0isnotallowed
121 mmn 1 i | no pivotin row 2

10 ¢ = 2 leads to zero in the second pivot position: exchange rows and not singular.

¢ = 1 leads to zero in the third pivot position. In this case the matrix is singular.

2 4 8 2
11 A= 1|0 3 9| has L =TI (A is already upper triangular) and D = 3 ;
0 0 7 7
(12 4
A=LUhasU=A; A=LDUhasU = D"'A= |0 1 3| with1’son the diagonal.
_O 0 1
12 A— 2 4 _ 1 0 2 4 _ 1 0 _2 0 1 2 :LDU;UiSLT
4 11 2 1 0 3 2 1 0 3 0 1
1 1 4 0 1 1 1 4 0
4 1 0 —4 =14 1 —4 0 1 —-1|=LDL"

4
0 -1 1;]10 0 4
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(aaaa]l [1 11a a a a | a # 0 All of the
abbbd 11 b—a b—a b—a b # a multipliers
13 = . Need
abcec 111 c—b c—b c#barel;; =1
labecd|l |1111]]| d—c]| d # cfor this A
_a ror r_ -1 ] _a r r r ] a#0
a b s s 1 1 b—r s—r s—r b#r
14 — . Need
a b c t 1 1 1 c—s t—s c#s
la b ¢ d] 111 1] d—1| d#t
10 2| . 2 2 4 2 -5
15 c= gives ¢ = . Then T = gives x = .
4 1 11 3 0 1 3 3
. 2 4 2 L 2 4 2
Ax =0b is LUx = T = . Eliminate to T = =c
8 17 11 0 1 3
1 0 0 4 4 1 1 1 4 3

16 {1 1 0|le=|5|givese= |[1|.Then |0 1 1|x=|1]|givesz= |0]|.
1 1 1 6 1 0 0 1 1 1
1 1 1 4

Those are forward elimination and back substitutionfor |1 2 2| x=|5].

1 2 3 6
17 (a) LgoestoI (b) Igoesto L—' (c) LU goesto U. Elimination multiplies by L—!!
18 (a) Multiply LDU = L, D,U, by inverses to get L, ' LD = D,U,U~". The left side

is lower triangular, the right side is upper triangular = both sides are diagonal.

(b) L,U, Ly,U; have diagonal 1’s so D = D;. Then L;lL and U; U1 are both I.

1 1 1 0 a a 0 a
19 |1 1 1 1 = LIU;|a a+b b = L b U.
0 1 1 1 0 b b+c c

A tridiagonal matrix A has bidiagonal factors L and U.
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20

21

22

23

24

25

26

Solutions to Exercises

A tridiagonal T" has 2 nonzeros in the pivot row and only one nonzero below the pivot
(one operation to find ¢ and then one for the new pivot!). Only 2n operations for

elimination on a tridiagonal matrix. 7" =bidiagonal L times bidiagonal U.

For the first matrix A, L keeps the 3 zeros at the start of rows. But U may not have the
upper zero where A,y = 0. For the second matrix B, L keeps the bottom left zero at
the start of row 4. U keeps the upper right zero at the start of column 4. One zero in A

and two zeros in B are filled in.

5 3 1 4 2 0 2 0 0
Eliminating upwards, |3 3 1| — |2 2 0| = |2 2 0| = L. We reach
1 1 1 1 1 1 1 1 1
a lower triangular L, and the multipliers are in an upper triangular U. A = U L with
1 1 1
U=10 11
0 0 1

The 2 by 2 upper submatrix A, has the first two pivots 5, 9. Reason: Elimination on A

starts in the upper left corner with elimination on As.

The upper left blocks all factor at the same time as A: Ay is LyU,. S0 A = LU is

possible only if all those blocks A, are invertible.

The i, j entry of L=1is j/ifori > j. And L;;_ is (1 — 4)/i below the diagonal

(K1) =jn—1i+1)/(n+1)fori > j (and symmetric): Multiply K~ by n + 1

(the determinant of K) to see all whole numbers.
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Problem Set 2.7, page 117

1 0 1 9
1A= has AT =
9 3 0 3

~3 1/3
1 -3|
0o 1/3|
1 110
A=|" “|hasAT=Aand A"t = — ‘I =@y
c 0 “le -1
1
2 (AB)T = { = BTAT. This answer is different from ATB™ (except when
37

AB = BA and transposing gives BT AT = ATBT),

3@ (AB)™HT = (B1AHT = (AHT(B~1)T. Thisis also (AT)=1(BT)~1.

(b) If U is upper triangular, so is U~': then (U~1)" is lower triangular.

4 A= has A2 = 0. But the diagonal of AT A has dot products of columns of A

0 0
with themselves. If AT A = 0, zero dot products = zero columns = A = zero matrix.

0
12 3
5 (a) mTAy={O 1] L ; 6] 1| =5
0

(b) Thisistherow zTA = {4 5 6] times y.

2
(c) This is also the row 2™ times Ay = [ ] .
5

: MT = M needs AT = Aand BT = C and DT = D.

AT cT
6 MT =
BT DU

A

0
7 (a) False:
A 0

} is symmetric only if A = AT,

(b) False: The transpose of AB is BYAT = BA. So (AB)T = ABneeds BA = AB.



40 Solutions to Exercises

(c) True: Invertible symmetric matrices have symmetric inverses! Easiest proof is to

transpose AA~! = I.
(d) True: (ABC)T is CT*BT AT (= C'BA for symmetric matrices A, B, and C).

8 The 1 inrow 1 has n choices; then the 1 in row 2 has n — 1 choices ... (n! overall).

0 1 0f|1 0 O 0 0 1 010
9P = |00 1||0 0 1| = |0 1 0| but P, = |1 0 0f-
1 0 00 1 O 1 00 0 0 1

If P53 and P, exchange different pairs of rows, P3Py = P, P; = both exchanges.

10 (3,1,2,4) and (2,3,1,4) keep 4 in place; 6 more even P’s keep 1 or 2 or 3 in place;
(2,1,4,3) and (3,4,1,2) and (4, 3,2, 1) exchange 2 pairs. (1,2, 3,4) makes 12.

0 1 0[]0 O 6 1 2 3
11 PA=1{0 0 1|11 2 3| =10 4 5| isuppertriangular. Multiplying A
1 0 0|0 4 5 0 0 6

on the right by a permutation matrix P, exchanges the columns of A. To make this A
lower triangular, we also need P; to exchange rows 2 and 3:
1 1 6 0 0
PLAP, = 1A 1 =15 4 0.
1 1 3 2 1
12 (Pz)"Y(Py)=xzTPTPy=a"ysince PTP=1I. Ingeneral Px-y=x-P'y # x- Py:
0 1 0 1 1 1 0 1 0 1
Non-equality where P # P*: |0 0 1] |2 11 #1210 0 1] |1
1 0 0 3 2 3 1 0 0 2

0 1 0
13 AcyclicP= |0 0 1| oritstranspose will have P3 = I : (1,2,3) — (2,3,1) —
1 00

~ 1 0 ~ ~
(3,1,2) — (1,2, 3). The permutation P = for the same P has P* = P # I.
0 P
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14 The “reverse identity” P takes (1,...,n) into (n,...,1). When rows and also columns
are reversed, the 1,1 and n, n entries of A change places in PAP. So do the 1, n and

n, 1 entries. In general (PAP);; iS (A)n—i+1,n—j+1-

15 (a) If P sends row 1 to row 4, then PT sendsrow 4torow1 (b) P = =
0 F

0 1
PTwith E = moves all rows: 1 and 2 are exchanged, 3 and 4 are exchanged.
10

16 A%— B%and also ABA are symmetric if A and B are symmetric. But (A+ B)(A— B)

and ABAB are generally not symmetric.

1 1 0 1
17 (@) S = = ST is not invertible (b) S = needs row exchange
1 1 1 1
11 _ 1 0
(c) S= has pivots D = : no real square root.
0 -1

18 (@) 5+4+ 3+ 2+ 1 = 15 independent entries if S = ST (b) L has 10 and D has 5;
total 15in LDLT (c) Zero diagonal if AT = — A, leaving 4+ 34241 = 10 choices.

19 (a) The transpose of ATSA is ATSTATT = ATSA = n by nwhen ST =S (any m
by n matrix A) (b) (AT A);; = (column j of A)- (column j of A) = (length squared

of column 5) > 0.

o |t 3 v ol |1 ol |t 3] [1ow 1 oll1 o 1 b
3 2 3 1010 =7l lo 1| |b ¢ b 1] |0 c—w2| |0 1
(2 1 0 1 2 1 -1 0

_ | 1 3 21 T
12 -1 =|-1 1 3 1 ~2| =LDL
2 4
0 -1 2 0 -2 1 4 1

21 Elimination on a symmetric 3 by 3 matrix leaves a symmetric lower right 2 by 2 matrix.

(2 4 8 1b ¢
-5 =7 d—0b> e—bc .
4 39|and|p d e leadto and : symmetric!
-7 =32 e—be f—c?

_890 cef
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22

23

24

25

26

27

Solutions to Exercises
1 1 1 0 1 1 1 1 2 0
1 A=10 1 1 1], 1|lA=1]1 1 -1 1
1 2 31 —1 1 2 01 1
0 0 0 1]

Ao 1 0 00 PadL—U~=1 Elimination on this A = P exchanges
01 00 rows 1-2 then rows 2-3 then rows 3-4.
00 1 0]

1 0 1 2 1 2 1 1
PA = LU is 1 0 3 8/ =10 1 3 8. If we
1 2 1 1 0 1/3 1 —2/3
1 1 2 1 1
waitto exchange and aq2 isthe pivot, A = L, AU, = |3 1 11 [0 1 2
1 1 0 0 2
One way to decide even vs. odd is to count all pairs that P has in the wrong order. Then

P is even or odd when that count is even or odd. Hard step: Show that an exchange
always switches that count! Then 3 or 5 exchanges will leave that count odd.

1 1 0 0
@ Ex=|-3 1 puts 0 inthe 2, 1 entry of E5; A. Then By  AES = |0 2 4

1 0 4 9
1
is still symmetric, with zero also inits 1, 2 entry.  (b) Now use F3, = 1
-2 1

to make the 3, 2 entry zero and E32E21AE2TIE3T2 = D also has zero in its 2, 3 entry.

Key point: Elimination from both sides (rows + columns) gives the symmetric LDL™.

01 2 3

1 2 3 0 i
A= = AT has 0,1,2,3 in every row. | don’t know any rules for a

2 3 01

3 01 2
symmetric construction like this “Hankel matrix” with constant antidiagonals.
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28

29

30

31

32

33

34

35

36

37

Reordering the rows and/or the columns of [2 B] will move the entry a. So the result

cannot be the transpose (which doesn’t move a).

1 0 1 YBC YBC + YBsS
(a) Total currents are ATy = | -1 1 0| |yes| = |-vysc+yes
0 -1 -1]| |yBs —Ycs — YBS

(b) Either way (Az)"y = =" (ATy) = zpypc + TBYBS — TcYBC + Teycs —

TsYcs — Tsyps. Six terms,

1 50 700
1 - 1 40 2 6820 | 1 truck
40 1000 =Ax, Aty = 3 | =
T 50 1000 50 188000 | 1 plane
2 50 3000

Az - y is the cost of inputs while = - ATy is the value of outputs.

P3 = I so three rotations for 360°; P rotates every v around the (1, 1, 1) line by 120°.
1 2 1 0|1 2

= = EH = (elementary matrix) times (symmetric ma-
4 9 2 1|12 5
trix).
L(UT)~1 is lower triangular times lower triangular, so lower triangular. The transpose

of UTDU isUTDTUTT = UT DU again, so UT DU is symmetric. The factorization

multiplies lower triangular by symmetric to get LDU which is A.

These are groups: Lower triangular with diagonal 1°s, diagonal invertible D, permuta-

tions P, orthogonal matrices with QT = Q1.

Certainly BT is northwest. B2 is a full matrix! B~ is southeast: [} (1)]_1 =[{_1]

The rows of B are in reverse order from a lower triangular L, so B = PL. Then
B~! = L='P~! has the columns in reverse order from L=!. So B! is southeast.

Northwest B = PL times southeast PU is (PLP)U = upper triangular.

There are n! permutation matrices of order n. Eventually two powers of P must be
the same permutation. And if P = P%then P" — 5 = [. Certainly r — s < n!
0 1 0

Py . . 0 1
P = is 5 by 5 with P, = andPs= 1|0 0 1|andPS=1.
Ps 1 0
1 0 O
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38 To split the matrix M into (symmetric S) + (anti-symmetric A), the only choice is
S=4(M+MT)and A =L(M - M7T).
ai 10
39 Start from QTQ = I, asin a | =
qg 0 1

(@) The diagonal entries give q{ g, = 1 and g3 g, = 1: unit vectors
(b) The off-diagonal entry is g7 g, = 0 (and in general ¢} q; = 0)

cos —sind
(c) The leading example for @ is the rotation matrix

sin @ cos 6





