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12 Solutions to Exercises

Problem Set 2.1, page 41

1 The row picture for A = I has 3 perpendicular planes x = 2 and y = 3 and z = 4.

Those are perpendicular to the x and y and z axes : z = 4 is a horizontal plane at

height 4.

The column vectors are i = (1, 0, 0) and j = (0, 1, 0) and k = (0, 0, 1). Then b =

(2, 3, 4) is the linear combination 2i+ 3j + 4k.

2 The planes in a row picture are the same: 2x = 4 is x = 2, 3y = 9 is y = 3, and

4z = 16 is z = 4. The solution is the same point X = x. The three column vectors

are changed; but the same combination (coefficients z, produces b = 34), (4, 9, 16).

3 The solution is not changed! The second plane and row 2 of the matrix and all columns

of the matrix (vectors in the column picture) are changed.

4 If z = 2 then x+ y = 0 and x − y = 2 give the point (x, y, z) = (1,−1, 2). If z = 0

then x+ y = 6 and x− y = 4 produce (5, 1, 0). Halfway between those is (3, 0, 1).

5 If x, y, z satisfy the first two equations they also satisfy the third equation = sum of

the first two. The line L of solutions contains v = (1, 1, 0) and w = (12 , 1,
1
2) and

u = 1
2v+ 1

2w and all combinations cv+ dw with c+ d = 1. (Notice that requirement

c+ d = 1. If you allow all c and d, you get a plane.)

6 Equation 1 + equation 2− equation 3 is now 0 = −4. The intersection lineL of planes

1 and 2 misses plane 3 : no solution.

7 Column 3 = Column 1 makes the matrix singular. For b = (2, 3, 5) the solutions are

(x, y, z) = (1, 1, 0) or (0, 1, 1) and you can add any multiple of (−1, 0, 1). b = (4, 6, c)

needs c = 10 for solvability (then b lies in the plane of the columns and the three

equations add to 0 = 0).

8 Four planes in 4-dimensional space normally meet at a point. The solution to Ax =

(3, 3, 3, 2) is x = (0, 0, 1, 2) if A has columns (1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0),

(1, 1, 1, 1). The equations are x+ y+ z+ t = 3, y+ z+ t = 3, z+ t = 3, t = 2. Solve

them in reverse order !
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9 (a) Ax = (18, 5, 0) and (b) Ax = (3, 4, 5, 5).

10 Multiplying as linear combinations of the columns gives the same Ax = (18, 5, 0) and

(3, 4, 5, 5). By rows or by columns: 9 separate multiplications when A is 3 by 3.

11 Ax equals (14, 22) and (0, 0) and (9, 7).

12 Ax equals (z, y, x) and (0, 0, 0) and (3, 3, 6).

13 (a) x has n components and Ax has m components (b) Planes from each equation

in Ax = b are in n-dimensional space. The columns of A are in m-dimensional space.

14 2x+3y+z+5t= 8 is Ax = b with the 1 by 4 matrix A = [ 2 3 1 5 ] : one row. The

solutions (x, y, z, t) fill a 3D “plane” in 4 dimensions. It could be called a hyperplane.

15 (a) I =


1 0

0 1


 = “identity” (b) P =


0 1

1 0


 = “permutation”

16 90◦ rotation from R =


 0 1

−1 0


, 180◦ rotation from R2 =


−1 0

0 −1


 = −I .

17 P =




0 1 0

0 0 1

1 0 0


 produces




y

z

x


 and Q =




0 0 1

1 0 0

0 1 0


 recovers




x

y

z


. Q is the

inverse of P . Later we write QP = I and Q = P−1.

18 E =


 1 0

−1 1


 and E =




1 0 0

−1 1 0

0 0 1


 subtract the first component from the second.

19 E =




1 0 0

0 1 0

1 0 1


 and E−1 =




1 0 0

0 1 0

−1 0 1


, Ev =




3

4

8


 and E−1Ev recovers




3

4

5


.

20 P1 =


1 0

0 0


 projects onto the x-axis and P2 =


0 0

0 1


 projects onto the y-axis.

The vector v =


5

7


 projects to P1v =


5

0


 and P2P1v =


0

0


.
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21 R =
1

2



√
2 −

√
2

√
2

√
2


 rotates all vectors by 45◦ . The columns of R are the results

from rotating (1, 0) and (0, 1)!

22 The dot product Ax = [ 1 4 5 ]




x

y

z


 = (1 by 3)(3 by 1) is zero for points (x, y, z)

on a plane in three dimensions. The 3 columns of A are one-dimensional vectors.

23 A = [ 1 2 ; 3 4 ] and x = [ 5 −2 ]
′

or [ 5 ; −2 ] and b = [ 1 7 ]
′

or [ 1 ; 7 ].

r = b− A ∗ x prints as two zeros.

24 A ∗ v = [ 3 4 5 ]
′

and v ′ ∗ v = 50. But v ∗ A gives an error message from 3 by 1

times 3 by 3.

25 ones(4, 4) ∗ ones(4, 1) = column vector [ 4 4 4 4 ]
′
; B ∗w = [ 10 10 10 10 ]

′
.

26 The row picture has two lines meeting at the solution (4, 2). The column picture will

have 4(1, 1) + 2(−2, 1) = 4(column 1) + 2(column 2) = right side (0, 6).

27 The row picture shows 2 planes in 3-dimensional space. The column picture is in

2-dimensional space. The solutions normally fill a line in 3-dimensional space.

28 The row picture shows four lines in the 2D plane. The column picture is in four-

dimensional space. No solution unless the right side is a combination of the two columns.

29 u2 =


 .7

.3


 and u3 =


 .65

.35


 .

The components add to 1. They are always positive.

Their components still add to 1.

30 u7 and v7 have components adding to 1; they are close to s = (.6, .4).


 .8 .3

.2 .7




 .6

.4


 =


 .6

.4


 = steady state s. No change when multiplied by


 .8 .3

.2 .7


.

31 M =




8 3 4

1 5 9

6 7 2


 =




5 + u 5− u+ v 5− v

5− u− v 5 5 + u+ v

5 + v 5 + u− v 5− u


; M3(1, 1, 1) = (15, 15, 15);

M4(1, 1, 1, 1) = (34, 34, 34, 34) because 1 + 2 + · · ·+ 16 = 136 which is 4(34).
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32 A is singular when its third column w is a combination cu + dv of the first columns.

A typical column picture has b outside the plane of u, v, w. A typical row picture has

the intersection line of two planes parallel to the third plane. Then no solution.

33 w = (5, 7) is 5u + 7v. Then Aw equals 5 times Au plus 7 times Av. Linearity

means : When w is a combination of u and v, then Aw is the same combination of Au

and Av.

34




2 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 2







x1

x2

x3

x4



=




1

2

3

4




has the solution




x1

x2

x3

x4



=




4

7

8

6




.

35 x = (1, . . . , 1) gives Sx = sum of each row = 1+ · · ·+9 = 45 for Sudoku matrices.

6 row orders (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1) are in Section 2.7.

The same 6 permutations of blocks of rows produce Sudoku matrices, so 64 = 1296

orders of the 9 rows all stay Sudoku. (And also 1296 permutations of the 9 columns.)

Problem Set 2.2, page 53

1 Multiply equation 1 by ℓ21 = 10
2

= 5 and subtract from equation 2 to find 2x+3y = 1

(unchanged) and −6y = 6. The pivots to circle are 2 and −6.

2 −6y = 6 gives y = −1. Then 2x + 3y = 1 gives x = 2. Multiplying the right side

(1, 11) by 4 will multiply the solution by 4 to give the new solution (x, y) = (8,−4).

3 Subtract − 1
2 (or add 1

2 ) times equation 1. The new second equation is 3y=3. Then

y=1 and x=5. If the right side changes sign, so does the solution: (x, y)=(−5,−1).

4 Subtract ℓ = c
a times equation 1 from equation 2. The new second pivot multiplying y

is d− (cb/a) or (ad− bc)/a. Then y = (ag− cf)/(ad− bc). Notice the “determinant

of A” = ad− bc. It must be nonzero for this division.
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5 6x + 4y is 2 times 3x + 2y. There is no solution unless the right side is 2 · 10 = 20.

Then all the points on the line 3x+2y = 10 are solutions, including (0, 5) and (4,−1).

The two lines in the row picture are the same line, containing all solutions.

6 Singular system if b = 4, because 4x+ 8y is 2 times 2x+ 4y. Then g = 32 makes the

lines 2x+ 4y = 16 and 4x+ 8y = 32 become the same: infinitely many solutions like

(8, 0) and (0, 4).

7 If a = 2 elimination must fail (two parallel lines in the row picture). The equations

have no solution. With a = 0, elimination will stop for a row exchange. Then 3y = −3

gives y = −1 and 4x+ 6y = 6 gives x = 3.

8 If k = 3 elimination must fail: no solution. If k = −3, elimination gives 0 = 0 in

equation 2: infinitely many solutions. If k = 0 a row exchange is needed: one solution.

9 On the left side, 6x− 4y is 2 times (3x− 2y). Therefore we need b2 = 2b1 on the right

side. Then there will be infinitely many solutions (two parallel lines become one single

line in the row picture). The column picture has both columns along the same line.

10 The equation y = 1 comes from elimination (subtract x + y = 5 from x + 2y = 6).

Then x = 4 and 5x− 4y = 20− 4 = c = 16.

11 (a) Another solution is 1
2
(x+X, y+Y, z+Z). (b) If 25 planes meet at two points,

they meet along the whole line through those two points.

12 Elimination leads to this upper triangular system; then comes back substitution.

2x + 3y + z = 8

y + 3z = 4

8z = 8

gives

x = 2

y = 1 If a zero is at the start of row 2 or row 3,

z = 1 that avoids a row operation.

13 2x − 3y = 3

4x − 5y + z = 7

2x − y − 3z = 5

gives

2x − 3y = 3

y + z = 1

2y + 3z = 2

and

2x − 3y = 3

y + z = 1

− 5z = 0

and

x = 3

y = 1

z = 0

Here are steps 1, 2, 3 : Subtract 2 × row 1 from row 2, subtract 1 × row 1 from row 3,

subtract 2 × row 2 from row 3
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14 Subtract 2 times row 1 from row 2 to reach (d−10)y−z = 2. Equation (3) is y−z = 3.

If d = 10 exchange rows 2 and 3. If d = 11 the system becomes singular.

15 The second pivot position will contain −2 − b. If b = −2 we exchange with row 3.

If b = −1 (singular case) the second equation is −y − z = 0. But equation (3) is the

same so there is a line of solutions (x, y, z) = (1, 1,−1).

16 (a)

Example of

2 exchanges

0x + 0y + 2z = 4

x + 2y + 2z = 5

0x + 3y + 4z = 6

(exchange 1 and 2, then 2 and 3)

(b)

Exchange

but then

breakdown

0x + 3y + 4z = 4

x + 2y + 2z = 5

0x + 3y + 4z = 6

(rows 1 and 3 are not consistent)

17 If row 1 = row 2, then row 2 is zero after the first step; exchange the zero row with row

3 and row 3 has no pivot. If column 2 = column 1, then column 2 has no pivot.

18 Example x + 2y + 3z = 0, 4x + 8y + 12z = 0, 5x + 10y + 15z = 0 has 9 different

coefficients but rows 2 and 3 become 0 = 0: infinitely many solutions to Ax = 0 but

almost surely no solution to Ax = b for a random b.

19 Row 2 becomes 3y − 4z = 5, then row 3 becomes (q + 4)z = t − 5. If q = −4 the

system is singular—no third pivot. Then if t = 5 the third equation is 0 = 0 which

allows infinitely many solutions. Choosing z = 1 the equation 3y−4z = 5 gives y = 3

and equation 1 gives x = −9.

20 Singular if row 3 is a combination of rows 1 and 2. From the end view, the three planes

form a triangle. This happens if rows 1+2=row 3 on the left side but not the right side:

x+y+z= 0, x−2y−z = 1, 2x−y= 4. No parallel planes but still no solution. The

three planes in the row picture form a triangular tunnel.

21 (a) Pivots 2, 3
2
, 4
3
, 5
4

in the equations 2x + y = 0, 3
2
y + z = 0, 4

3
z + t = 0, 5

4
t = 5

after elimination. Back substitution gives t = 4, z = −3, y = 2, x = −1. (b) If

the off-diagonal entries change from +1 to −1, the pivots are the same. The solution is

(1, 2, 3, 4) instead of (−1, 2,−3, 4).

22 The fifth pivot is 6

5
for both matrices (1’s or −1’s off the diagonal). The nth pivot is

n+1

n
.
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23 If ordinary elimination leads to x + y = 1 and 2y = 3, the original second equation

could be 2y+ ℓ(x+y) = 3+ ℓ for any ℓ. Then ℓ will be the multiplier to reach 2y = 3,

by subtracting ℓ times equation 1 from equation 2.

24 Elimination fails on


a 2

a a


 if a = 2 or a = 0. (You could notice that the determinant

a2 − 2a is zero for a = 2 and a = 0.)

25 a = 2 (equal columns), a = 4 (equal rows), a = 0 (zero column).

26 Solvable for s = 10 (add the two pairs of equations to get a+b+c+d on the left sides,

12 and 2 + s on the right sides). So 12 must agree with 2 + s, which makes s = 10.

The four equations for a, b, c, d are singular! Two solutions are


1 3

1 7


 and


0 4

2 6


,

A =




1 1 0 0

1 0 1 0

0 0 1 1

0 1 0 1




and U =




1 1 0 0

0 −1 1 0

0 0 1 1

0 0 0 0




.

27 Elimination leaves the diagonal matrix diag(3, 2, 1) in 3x = 3, 2y = 2, z = 2. Then

x = 1, y = 1, z = 2.

28 A(2, :) = A(2, :)− 3 ∗ A(1, :) subtracts 3 times row 1 from row 2.

29 The average pivots for rand(3) without row exchanges were 1
2 , 5, 10 in one experiment—

but pivots 2 and 3 can be arbitrarily large. Their averages are actually infinite ! With

row exchanges in MATLAB’s lu code, the averages .75 and .50 and .365 are much

more stable (and should be predictable, also for randn with normal instead of uniform

probability distribution for the numbers in A).

30 If A(5, 5) is 7 not 11, then the last pivot will be 0 not 4.

31 Row j of U is a combination of rows 1, . . . , j of A (when there are no row exchanges).

If Ax = 0 then Ux = 0 (not true if b replaces 0). U just keeps the diagonal of A when

A is lower triangular.

32 The question deals with 100 equations Ax = 0 when A is singular.
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(a) Some linear combination of the 100 rows is the row of 100 zeros.

(b) Some linear combination of the 100 columns is the column of zeros.

(c) A very singular matrix has all ones: A = ones (100). A better example has 99

random rows (or the numbers 1i, . . . , 100i in those rows). The 100th row could

be the sum of the first 99 rows (or any other combination of those rows with no

zeros).

(d) The row picture has 100 planes meeting along a common line through 0. The

column picture has 100 vectors all in the same 99-dimensional hyperplane.

Problem Set 2.3, page 66

1 E21 =




1 0 0

−5 1 0

0 0 1


 , E32 =




1 0 0

0 1 0

0 7 1


 , P =




1 0 0

0 0 1

0 1 0







0 1 0

1 0 0

0 0 1


 =




0 1 0

0 0 1

1 0 0


.

2 E32E21b = (1,−5,−35) but E21E32b = (1,−5, 0). When E32 comes first, row 3

feels no effect from row 1.

3




1 0 0

−4 1 0

0 0 1


 ,




1 0 0

0 1 0

2 0 1


 ,




1 0 0

0 1 0

0 −2 1


 M = E32E31E21 =




1 0 0

−4 1 0

10 −2 1


 .

Those E’s are in the right order to give MA = U .

4 Elimination on column 4: b =




1

0

0




E21→




1

−4

0




E31→




1

−4

2




E32→




1

−4

10




. The

original Ax = b has become Ux = c = (1,−4, 10). Then back substitution gives

z = −5, y = 1
2
, x = 1

2
. This solves Ax = (1, 0, 0).

5 Changing a33 from 7 to 11 will change the third pivot from 5 to 9. Changing a33 from

7 to 2 will change the pivot from 5 to no pivot.
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6 Example:




2 3 7

2 3 7

2 3 7







1

3

−1



=




4

4

4




. If all columns are multiples of column 1, there

is no second pivot.

7 To reverse E31, add 7 times row 1 to row 3. The inverse of the elimination matrix

E =




1 0 0

0 1 0

−7 0 1




is E−1 =




1 0 0

0 1 0

7 0 1




. Multiplication confirms EE−1 = I.

8 M =


a b

c d


 and M* =


 a b

c− ℓa d− ℓb


. detM* = a(d − ℓb) − b(c − ℓa)

reduces to ad− bc ! Subtracting row 1 from row 2 doesn’t change detM .

9 M=




1 0 0

0 0 1

−1 1 0


. After the exchange, we need E31 (not E21) to act on the new row 3.

10 E13=




1 0 1

0 1 0

0 0 1


 ;




1 0 1

0 1 0

1 0 1


 ;E31E13=




2 0 1

0 1 0

1 0 1


 . Test on the identity matrix!

11 An example with two negative pivots is A =




1 2 2

1 1 2

1 2 1


. The diagonal entries can

change sign during elimination.

12 The first product is




9 8 7

6 5 4

3 2 1




rows and

also columns

reversed.

The second product is




1 2 3

0 1 −2

0 2 −3


.
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13 (a) E times the third column of B is the third column of EB. A column that starts

at zero will stay at zero. (b) E could add row 2 to row 3 to change a zero row to a

nonzero row.

14 E21 has −ℓ21=
1
2 , E32 has −ℓ32=

2
3 , E43 has −ℓ43=

3
4 . Otherwise the E’s match I .

15 aij = 2i− 3j: A =




−1 −4 −7

1 −2 −5

3 0 −3


 →




−1 −4 −7

0 −6 −12

0 −12 −24


. The zero became −12,

an example of fill-in. To remove that −12, choose E32 =




1 0 0

0 1 0

0 −2 1


.

Every 3 by 3 matrix with entries aij = ci+ dj is singular !

16 (a) The ages of X and Y are x and y: x− 2y = 0 and x+ y = 33; x = 22 and y = 11

(b) The line y = mx + c contains x = 2, y = 5 and x = 3, y = 7 when 2m+ c = 5

and 3m+ c = 7. Then m = 2 is the slope.

17 The parabola y=a+bx+cx2 goes through the 3 given points when

a+ b+ c = 4

a+ 2b+ 4c = 8

a+ 3b+ 9c = 14

.

Then a = 2, b = 1, and c = 1. This matrix with columns (1, 1, 1), (1, 2, 3), (1, 4, 9) is

a “Vandermonde matrix.”

18 EF =




1 0 0

a 1 0

b c 1


, FE=




1 0 0

a 1 0

b+ac c 1


, E2=




1 0 0

2a 1 0

2b 0 1


, F 3=




1 0 0

0 1 0

0 3c 1


 .

19 PQ =




0 1 0

0 0 1

1 0 0


. In the opposite order, two row exchanges giveQP =




0 0 1

1 0 0

0 1 0


,

P 2 = I . If M exchanges rows 2 and 3 then M2 = I (also (−M)
2
= I). There are

many square roots of I : Any matrix M =


a b

c −a


 has M2 = I if a2 + bc = 1.
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20 (a) Each column of EB is E times a column of B (b)


1 0

1 1





1 2 4

1 2 4


 =


 1 2 4

2 4 8


. All rows of EB are multiples of

[
1 2 4

]
.

21 No. E =


1 0

1 1


 and F =


1 1

0 1


 give EF =


1 1

1 2


 but FE =


2 1

1 1


.

22 (a)
∑

a3jxj (b) a21 − a11 (c) a21 − 2a11 (d) (EAx)1 = (Ax)1 =
∑

a1jxj .

23 E(EA) subtracts 4 times row 1 from row 2 (EEA does the row operation twice).

AE subtracts 2 times column 2 of A from column 1 (multiplication by E on the right

side acts on columns instead of rows).

24

[
A b

]
=


2 3 1

4 1 17


→


2 3 1

0 −5 15


. The triangular system is

2x1 + 3x2 = 1

−5x2 = 15

Back substitution gives x1 = 5 and x2 = −3.

25 The last equation becomes 0 = 3. If the original 6 is 3, then row 1 + row 2 = row 3.

Then the last equation is 0 = 0 and the system has infinitely many solutions.

26 (a) Add two columns b and b∗ to get [A b b∗]. The example has

1 4 1 0

2 7 0 1


→


1 4 1 0

0 −1 −2 1


→ x =


−7

2


 and x∗ =


 4

−1


.

27 (a) No solution if d=0 and c 6=0 (b) Many solutions if d=0=c. No effect from a, b.

28 A = AI = A(BC) = (AB)C = IC = C. That middle equation is crucial.

29 E=




1 0 0 0

−1 1 0 0

0 −1 1 0

0 0 −1 1




subtracts each row from the next row. The result




1 0 0 0

0 1 0 0

0 1 1 0

0 1 2 1




still has multipliers = 1 in a 3 by 3 Pascal matrix. The product M of all elimination
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matrices is




1 0 0 0

−1 1 0 0

1 −2 1 0

−1 3 −3 1




. This “alternating sign Pascal matrix” is on page 91.

30 (a) E = A−1 =


 1 0

−1 1


 will reduce row 2 of EM to [2 3].

(b) Then F = B−1 =


 1 −1

0 1


 will reduce row 1 of FEM to [1 1].

(c) Then E = A−1 twice will reduce row 2 of EEFEM to [0 1]

(d) Now EEFEM = B. Move E’s and F ’s to get M = ABAAB. This question

focuses on positive integer matrices M with ad − bc = 1. The same steps make the

entries smaller and smaller until M is a product of A’s and B’s.

31 E21 =




1

a 1

0 0 1

0 0 0 1




, E32 =




1

0 1

0 b 1

0 0 0 1




, E43 =




1

0 1

0 0 1

0 0 c 1




,

E43 E32E21 =




1

a 1

ab b 1

abc bc c 1




Problem Set 2.4, page 77

1 If all entries of A,B,C,D are 1, then BA = 3 ones(5) is 5 by 5; AB = 5 ones(3) is

3 by 3; ABD = 15 ones(3, 1) is 3 by 1. DC and A(B + C) are not defined.

2 (a) A (column 2 of B) (b) (Row 1 of A) B (c) (Row 3 of A)(column 5 of B)

(d) (Row 1 of C)D(column 1 of E). (Part (c) assumed 5 columns in B)
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3 AB + AC is the same as A(B + C) =


3 8

6 9


. (Distributive law).

4 A(BC) = (AB)C by the associative law. In this example both answers are


0 0

0 0


.

Column 1 of AB and row 2 of C are zero (then multiply columns times rows).

5 (a) A2 =


1 2b

0 1


 andAn =


1 nb

0 1


. (b) A2 =


4 4

0 0


 andAn =


2

n 2n

0 0


.

6 (A+B)2 =


10 4

6 6


 = A2 +AB +BA+B2. But A2 + 2AB +B2 =


16 2

3 0


.

7 (a) True (b) False (c) True (d) False: usually (AB)2 = ABAB 6= A2B2.

8 The rows ofDA are 3 (row 1 ofA) and 5 (row 2 of A). Both rows ofEA are row 2 ofA.

The columns of AD are 3 (column 1 of A) and 5 (column 2 of A). The first column of

AE is zero, the second is column 1 of A + column 2 of A.

9 AF =




a a+ b

c c+ d


 and E(AF ) equals (EA)F because matrix multiplication is

associative.

10 FA =




a+ c b+ d

c d


 and then E(FA) =




a+ c b+ d

a+ 2c b+ 2d


. E(FA) is not

the same as F (EA) because multiplication is not commutative: EF 6= FE.

11 Suppose EA does the row operation and then (EA)F does the column operation (be-

cause F is multiplying from the right). The associative law says that (EA)F = E(AF )

so the column operation can be done first !

12 (a) B = 4I (b) B = 0 (c) B =




0 0 1

0 1 0

1 0 0


 (d) Every row of B is 1, 0, 0.
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13 AB =




a 0

c 0


 = BA =




a b

0 0


 gives b = c = 0. Then AC = CA gives

a = d. The only matrices that commute with B and C (and all other matrices) are

multiples of I : A = aI .

14 (A − B)2 = (B − A)2 = A(A − B) − B(A − B) = A2 − AB − BA + B2. In a

typical case (when AB 6= BA) the matrix A2−2AB+B2 is different from (A−B)2.

15 (a) True (A2 is only defined when A is square).

(b) False (if A is m by n and B is n by m, then AB is m by m and BA is n by n).

(c) True by part (b).

(d) False (take B = 0).

16 (a) mn (use every entry of A) (b) mnp = p×part (a) (c) n3 (n2 dot products).

17 (a) Use only column 2 of B (b) Use only row 2 of A (c)–(d) Use row 2 of first A.

Column 2 ofAB =


 0

0


 Row 2 ofAB =

[
1 0 0

]
Row 2 ofA2 =

[
0 1

]

Row 2 of A3 =
[
3 −2

]

18 A =




1 1 1

1 2 2

1 2 3




has aij = min(i, j). A =




1 −1 1

−1 1 −1

1 −1 1




has aij = (−1)i+j =

“alternating sign matrix”. A =




1/1 1/2 1/3

2/1 2/2 2/3

3/1 3/2 3/3




has aij = i/j. This will be an

example of a rank one matrix : 1 column
[
1 2 3

]T
multiplies 1 row

[
1 1

2
1
3

]
.

19 Diagonal matrix, lower triangular, symmetric, all rows equal. Zero matrix fits all four.

20 (a) a11 (b) ℓ31 = a31/a11 (c) a32 −
(
a31
a11

)
a12 (d) a22 −

(
a21
a11

)
a12.
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21 A2 =




0 0 4 0

0 0 0 4

0 0 0 0

0 0 0 0




, A3 =




0 0 0 8

0 0 0 0

0 0 0 0

0 0 0 0




, A4 = zero matrix for strictly triangular A.

Then Av = A




x

y

z

t




=




2y

2z

2t

0




, A2v =




4z

4t

0

0




, A3v =




8t

0

0

0




, A4v = 0.

22 A =


 0 1

−1 0


 has A2 = −I ; BC =


1 −1

1 −1




1 1

1 1


 =


0 0

0 0


;

DE =


0 1

1 0




 0 1

−1 0


 =


−1 0

0 1


 = −ED. You can find more examples.

23 A =




0 1

0 0


 has A2 = 0. Note: Any matrix A = column times row = uvT will

have A2 = uvTuvT = 0 if vTu = 0. A =




0 1 0

0 0 1

0 0 0




has A2 =




0 0 1

0 0 0

0 0 0




but A3 = 0; strictly triangular as in Problem 21.

24 (A1)
n =


2

n 2n − 1

0 1


, (A2)

n = 2n−1


1 1

1 1


, (A3)

n =


a

n an−1b

0 0


.

25




a b c

d e f

g h i







1 0 0

0 1 0

0 0 1


=




a

d

g




[
1 0 0

]

+




d

e

h




[
0 1 0

]

+




c

f

i




[
0 0 1

]

.
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26
Columns of A

times rows of B




1

2

2



[
3 3 0

]
+




0

4

1



[
1 2 1

]
=




3 3 0

6 6 0

6 6 0


+




0 0 0

4 8 4

1 2 1


 =




3 3 0

10 14 4

7 8 1


 = AB.

27 (a) (row 3 of A) · (column 1 or 2 of B) and (row 3 of A) · (column 2 of B) are all zero.

(b)




x

x

0



[
0 x x

]
=




0 x x

0 x x

0 0 0


 and




x

x

x



[
0 0 x

]
=




0 0 x

0 0 x

0 0 x


: both upper.

28
A times B

with cuts
A

[ ∣∣∣∣
∣∣∣∣
∣∣∣∣
]
,


 −−−−


B,


 −−−−



[ ∣∣∣∣

∣∣∣∣
∣∣∣∣
]
,

[ ∣∣∣∣
∣∣∣∣
]



−−−−
−−−−




4 cols 2 rows 2 rows – 4 cols 3 cols – 3 rows

29 E21 =




1 0 0

1 1 0

0 0 1


 and E31 =




1 0 0

0 1 0

−4 0 1


 produce zeros in the 2, 1 and 3, 1 entries.

Multiply E’s to get E = E31E21 =




1 0 0

1 1 0

−4 0 1


. Then EA =




2 1 0

0 1 1

0 1 3


 is the

result of both E’s since (E31E21)A = E31(E21A).

30 In 29, c =


−2

8


, D =


0 1

5 3


, D − cb/a =


1 1

1 3


 in the lower corner of EA.

31


A −B

B A




x

y


=


Ax− By

Bx+ Ay


 real part

imaginary part.

Complex matrix times complex vector

needs 4 real times real multiplications.

32 A times X = [x1 x2 x3 ] will be the identity matrix I = [Ax1 Ax2 Ax3 ].
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33 b =




3

5

8


 gives x = 3x1 + 5x2 + 8x3 =




3

8

16


 ; A =




1 0 0

−1 1 0

0 −1 1


 will have

those x1 = (1, 1, 1),x2 = (0, 1, 1),x3 = (0, 0, 1) as columns of its “inverse” A−1.

34 A ∗ ones =


a+ b a+ b

c+ d c+ d


 agrees with ones ∗A =


a+ c b+ b

a+ c b+ d


 when b = c

and a = d

Then A =


a b

b a


. These are the matrices that commute with


1 1

1 1


.

35 S =




0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0



, S2 =




2 0 2 0

0 2 0 2

2 0 2 0

0 2 0 2



,

aba, ada cba, cda

bab, bcb dab, dcb

abc, adc cbc, cdc

bad, bcd dad, dcd

These show

16 2-step

paths in

the graph

36 Multiplying AB =(m by n)(n by p) needs mnp multiplications. Then (AB)C needs

mpq more. Multiply BC = (n by p)(p by q) needs npq and then A(BC) needs mnq.

(a) If m,n, p, q are 2, 4, 7, 10 we compare (2)(4)(7) + (2)(7)(10) = 196 with the

larger number (2)(4)(10) + (4)(7)(10) = 360. So AB first is better, we want to

multiply that 7 by 10 matrix by as few rows as possible.

(b) If u,v,w are N by 1, then (uTv)wT needs 2N multiplications but uT(vwT)

needs N2 to find vwT and N2 more to multiply by the row vector uT. Apologies

to use the transpose symbol so early.

(c) We are comparing mnp + mpq with mnq + npq. Divide all terms by mnpq:

Now we are comparing q−1 + n−1 with p−1 + m−1. This yields a simple im-

portant rule. If matrices A and B are multiplying v for ABv, don’t multiply the

matrices first. Better to multiply Bv and then A(Bv).
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37 The proof of (AB)c = A(Bc) used the column rule for matrix multiplication.

“The same is true for all other columns of C.”

Even for nonlinear transformations, A(B(c)) would be the “composition” of A with

B (applying B then A). This composition A ◦ B is just written as AB for matrices.

One of many uses for the associative law: The left-inverse B = the right-inverse C

because B = B(AC) = (BA)C = C.

38 (a) Multiply the columns a1, . . . ,am by the rows aT
1 , . . . ,a

T
m and add the resulting

matrices.

(b) ATCA = c1a1a
T
1 + · · ·+ cmamaT

m. Diagonal C makes it neat.

Problem Set 2.5, page 92

1 A−1 =


 0 1

4

1
3

0


 and B−1 =




1
2

0

−1 1
2


 and C−1 =


 7 −4

−5 3


.

2 For the first, a simple row exchange has P 2 = I so P−1 = P . For the second,

P−1 =




0 0 1

1 0 0

0 1 0


. Always P−1 = “transpose” of P , coming in Section 2.7.

3


x

y


 =


 .5

−.2


 and


 t

z


 =


−.2

.1


 so A−1 =

1

10


 5 −2

−2 1


. This question

solved AA−1 = I column by column, the main idea of Gauss-Jordan elimination. For

a different matrix A =


 1 1

0 0


, you could find a first column for A−1 but not a

second column—so A would be singular (no inverse).

4 The equations are x+ 2y = 1 and 3x+ 6y = 0. No solution because 3 times equation

1 gives 3x+ 6y = 3.



30 Solutions to Exercises

5 An upper triangular U with U2 = I is U =


1 a

0 −1


 for any a. And also −U .

6 (a) Multiply AB = AC by A−1 to find B = C (since A is invertible) (b) As long as

B − C has the form


 x y

−x −y


, we have AB = AC for A =


1 1

1 1


.

7 (a) In Ax = (1, 0, 0), equation 1 + equation 2 − equation 3 is 0 = 1 (b) Right

sides must satisfy b1+ b2 = b3 (c) Row 3 becomes a row of zeros—no third pivot.

8 (a) The vector x = (1, 1,−1) solves Ax = 0 (b) After elimination, columns 1

and 2 end in zeros. Then so does column 3 = column 1 + 2: no third pivot.

9 Yes, B is invertible (A was just multiplied by a permutation matrix P ). If you exchange

rows 1 and 2 of A to reach B, you exchange columns 1 and 2 of A−1 to reach B−1. In

matrix notation, B = PA has B−1 = A−1P−1 = A−1P for this P .

10 A−1 =




0 0 0 1/5

0 0 1/4 0

0 1/3 0 0

1/2 0 0 0




and B−1 =




3 −2 0 0

−4 3 0 0

0 0 6 −5

0 0 −7 6




( invert each

block of B)

11 (a) If B = −A then certainly A+ B = zero matrix is not invertible.

(b) A =


1 0

0 0


 and B =


0 0

0 1


 are both singular but A+B = I is invertible.

12 Multiply C = AB on the left by A−1 and on the right by C−1. Then A−1 = BC−1.

13 M−1 = C−1B−1A−1 so multiply on the left by C and the right by A : B−1 =

CM−1A.

14 B−1 = A−1


1 0

1 1



−1

= A−1


 1 0

−1 1


: subtract column 2 of A−1 from column 1.

15 If A has a column of zeros, so does BA. Then BA = I is impossible. There is no A−1.
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16


a b

c d




 d −b

−c a


 =


ad− bc 0

0 ad− bc


.

The inverse of each matrix is

the other divided by ad− bc

17 E32E31E21 =




1

1

−1 1







1

1

−1 1







1

−1 1

1


 =




1

−1 1

0 −1 1


 = E.

Reverse the order and change−1 to +1 to get inverses E−1
21 E−1

31 E−1
32 =




1

1 1

1 1 1


 =

L = E−1. Notice that the 1’s are unchanged by multiplying inverses in this order.

18 A2B = I can also be written as A(AB) = I . Therefore A−1 is AB.

19 The (1, 1) entry requires 4a− 3b = 1; the (1, 2) entry requires 2b− a = 0. Then b = 1

5

and a = 2

5
. For the 5 by 5 case 5a− 4b = 1 and 2b = a give b = 1

6
and a = 2

6
.

20 A ∗ ones(4, 1) = A (column of 1’s) is the zero vector so A cannot be invertible.

21 Six of the sixteen 0− 1 matrices are invertible : I and P and all four with three 1’s.

22


1 3 1 0

2 7 0 1


→


1 3 1 0

0 1 −2 1


→


1 0 7 −3

0 1 −2 1


 =

[
I A−1

]
;


1 4 1 0

3 9 0 1


→


1 4 1 0

0 −3 −3 1


→


1 0 −3 4/3

0 1 1 −1/3


 =

[
I A−1

]
.

23 [A I] =




2 1 0 1 0 0

1 2 1 0 1 0

0 1 2 0 0 1


→




2 1 0 1 0 0

0 3/2 1 −1/2 1 0

0 1 2 0 0 1


→




2 1 0 1 0 0

0 3/2 1 −1/2 1 0

0 0 4/3 1/3 −2/3 1


→




2 1 0 1 0 0

0 3/2 0 −3/4 3/2 −3/4

0 0 4/3 1/3 −2/3 1


→



32 Solutions to Exercises




2 0 0 3/2 −1 1/2

0 3/2 0 −3/4 3/2 −3/4

0 0 4/3 1/3 −2/3 1


→




1 0 0 3/4 −1/2 1/4

0 1 0 −1/2 1 −1/2

0 0 1 1/4 −1/2 3/4


 =

[I A−1].

24




1 a b 1 0 0

0 1 c 0 1 0

0 0 1 0 0 1


→




1 a 0 1 0 −b

0 1 0 0 1 −c

0 0 1 0 0 1


→




1 0 0 1 −a ac− b

0 1 0 0 1 −c

0 0 1 0 0 1


.

25




2 1 1

1 2 1

1 1 2




−1

=
1

4




3 −1 −1

−1 3 −1

−1 −1 3


 ; B




1

1

1


 =




2 −1 −1

−1 2 −1

−1 −1 2







1

1

1


 =




0

0

0




so B−1 does not exist.

26 E21A=


 1 0

−2 1




1 2

2 6


=


1 2

0 2


. E12E21A=


1 −1

0 1




 1 0

−2 1


A =


1 0

0 2


.

Multiply by D =


1 0

0 1/2


 to reach DE12E21A = I . Then A−1 = DE12E21 =

1

2


 6 −2

−2 1


.

27 A−1 =




1 0 0

−2 1 −3

0 0 1


 (notice the sign changes); A−1 =




2 −1 0

−1 2 −1

0 −1 1


.

28


0 2 1 0

2 2 0 1


→


2 2 0 1

0 2 1 0


→


2 0 −1 1

0 2 1 0


→


1 0 −1/2 1/2

0 1 1/2 0


.

This is
[
I A−1

]
: row exchanges are certainly allowed in Gauss-Jordan.
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29 (a) True (If A has a row of zeros, then every AB has too, and AB = I is impossible).

(b) False (the matrix of all ones is singular even with diagonal 1’s.

(c) True (the inverse of A−1 is A and the inverse of A2 is (A−1)2).

30 Elimination produces the pivots a and a−b and a−b. A−1 =
1

a(a− b)




a 0 −b

−a a 0

0 −a a


.

The matrix C is not invertible if c = 0 or c = 7 or c = 2.

31 A−1 =




1 1 0 0

0 1 1 0

0 0 1 1

0 0 0 1




and x = A−1




1

1

1

1



=




2

2

2

1




. When the triangular A alternates

1 and −1 on its diagonals, A−1 has 1’s on the diagonal and first superdiagonal.

32 x = (1, 1, . . . , 1) has x = Px = Qx so (P −Q)x = 0. Permutations do not change

this all-ones vector.

33


 I 0

−C I


 and


 A−1 0

−D−1CA−1 D−1


 and


−D I

I 0


.

34 A can be invertible with diagonal zeros (example to find). B is singular because each

row adds to zero. The all-ones vector x has Bx = 0.

35 The equation LDLD = I says that LD = pascal (4, 1) is its own inverse.

36 hilb(6) is not the exact Hilbert matrix because fractions are rounded off. So inv(hilb(6))

is not the exact inverse either.

37 The three Pascal matrices have P = LU = LLT and then inv(P ) = inv(LT)∗inv(L).

38 Ax = b has many solutions when A = ones (4, 4) = singular and b = ones (4, 1).

A\b in MATLAB will pick the shortest solution x = (1, 1, 1, 1)/4. This is the only

solution that is a combination of the rows of A (later it comes from the “pseudoinverse”

A+ = pinv(A) which replaces A−1 whenA is singular). Any vector that solvesAx = 0

could be added to this particular solution x.
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39 The inverse of A =




1 −a 0 0

0 1 −b 0

0 0 1 −c

0 0 0 1




is A−1 =




1 a ab abc

0 1 b bc

0 0 1 c

0 0 0 1




. (This would

be a good example for the cofactor formula A−1 = CT/ detA in Section 5.3)

40




1

a 1

b 0 1

c 0 0 1







1

0 1

0 d 1

0 e 0 1







1

1

1

f 1



=




1

a 1

b d 1

c e f 1




In this order the multipliers a, b, c, d, e, f are unchanged in the product (important for

A = LU in Section 2.6).

41 4 by 4 still with T11 = 1 has pivots 1, 1, 1, 1; reversing to T ∗ = UL makes T ∗
44 = 1.

T =




1 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 2




and T−1 =




4 3 2 1

3 3 2 1

2 2 2 1

1 1 1 1




42 Add the equations Cx = b to find 0 = b1 + b2 + b3 + b4. So C is singular. Same for

Fx = b.

43 The block pivots are A and S = D − CA−1B (and d− cb/a is the correct

second pivot of an ordinary 2 by 2 matrix). The example problem has

Schur complement S =


 1 0

0 1


−


 4

4


 1

2

[
3 3

]
=


 −5 −6

−6 −5


.

44 Inverting the identity A(I + BA) = (I + AB)A gives (I + BA)−1A−1 = A−1(I +

AB)−1. So I+BA and I+AB are both invertible or both singular whenA is invertible.

(This remains true also when A is singular : Chapter 6 will show that AB and BA have

the same nonzero eigenvalues, and we are looking here at the eigenvalue −1.)
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Problem Set 2.6, page 104

1 ℓ21 = 1 multiplied row 1; L =


1 0

1 1


 times Ux =


1 0

1 1




x

y


 =


5

2


 = c is

Ax = b =


1 1

1 2




x

y


 =


5

7


. In letters, L multiplies Ux = c to give Ax = b.

2 Lc = b is


1 0

1 1




c1
c2


 =


5

7


, solved by c =


5

2


 as elimination goes forward.

Ux = c is


1 1

0 1




x

y


 =


5

2


, solved by x =


3

2


 in back substitution.

3 ℓ31 = 1 and ℓ32 = 2 (and ℓ33 = 1): reverse steps to get Au = b from Ux = c:

1 times (x+y+z = 5)+2 times (y+2z = 2)+1 times (z = 2) gives x+3y+6z = 11.

4 Lc =




1

1 1

1 2 1







5

2

2


 =




5

7

11


; Ux =




1 1 1

1 2

1





x


 =




5

2

2


; x =




5

−2

2


.

5 EA =




1

0 1

−3 0 1







2 1 0

0 4 2

6 3 5


 =




2 1 0

0 4 2

0 0 5


 = U .

With E−1 as L, A = LU =




1

0 1

3 0 1







2 1 0

0 4 2

0 0 5


 =




2 1 0

0 4 2

6 3 5


.

6




1

0 1

0 −2 1







1

−2 1

0 0 1


A =




1 1 1

0 2 3

0 0 −6


 = U . Then A =




1 0 0

2 1 0

0 2 1


 U is

the same as E−1
21 E−1

32 U = LU . The multipliers ℓ21 = ℓ32 = 2 fall into place in L.
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7 E32E31E21 A =




1

1

−2 1







1

1

−3 1







1

−2 1

1







1 0 0

2 2 2

3 4 5


. This is




1 0 1

0 2 0

0 0 2


 = U . Put those multipliers 2, 3, 2 intoL.ThenA =




1 0 0

2 1 0

3 2 1


U = LU .

8 E = E32E31E21 =




1

−a 1

ac− b −c 1


 is mixed butL isE−1

21 E−1
31 E−1

32 =




1

a 1

b c 1


.

9 2 by 2: d = 0 not allowed;




1 1 0

1 1 2

1 2 1


=




1

ℓ 1

m n 1







d e g

f h

i




d = 1, e = 1, then ℓ = 1

f = 0 is not allowed

no pivot in row 2

10 c = 2 leads to zero in the second pivot position: exchange rows and not singular.

c = 1 leads to zero in the third pivot position. In this case the matrix is singular.

11 A =




2 4 8

0 3 9

0 0 7


 has L = I (A is already upper triangular) and D =




2

3

7


 ;

A=LU has U=A; A=LDU has U = D−1A=




1 2 4

0 1 3

0 0 1


with 1’s on the diagonal.

12 A =


2 4

4 11


 =


1 0

2 1




2 4

0 3


 =


1 0

2 1




2 0

0 3




1 2

0 1


=LDU ; U is LT




1

4 1

0 −1 1







1 4 0

0 −4 4

0 0 4


 =




1

4 1

0 −1 1







1

−4

4







1 4 0

0 1 −1

0 0 1


=LDLT.
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13




a a a a

a b b b

a b c c

a b c d



=




1

1 1

1 1 1

1 1 1 1







a a a a

b− a b− a b− a

c− b c− b

d− c




. Need

a 6= 0 All of the

b 6= a multipliers

c 6= b are ℓij = 1

d 6= c for this A

14




a r r r

a b s s

a b c t

a b c d



=




1

1 1

1 1 1

1 1 1 1







a r r r

b− r s− r s− r

c− s t− s

d− t




. Need

a 6= 0

b 6= r

c 6= s

d 6= t

15


1 0

4 1


 c =


 2

11


 gives c =


2

3


. Then


2 4

0 1


x =


2

3


 gives x =


−5

3


.

Ax = b is LUx =


2 4

8 17


 x =


 2

11


. Eliminate to


2 4

0 1


x =


2

3


 = c.

16




1 0 0

1 1 0

1 1 1


 c =




4

5

6


 gives c =




4

1

1


. Then




1 1 1

0 1 1

0 0 1


x =




4

1

1


 gives x =




3

0

1


.

Those are forward elimination and back substitution for




1 1 1

1 2 2

1 2 3


x =




4

5

6


.

17 (a) L goes to I (b) I goes to L−1 (c) LU goes to U . Elimination multiplies by L−1!

18 (a) Multiply LDU = L1D1U1 by inverses to get L−1
1 LD = D1U1U

−1. The left side

is lower triangular, the right side is upper triangular ⇒ both sides are diagonal.

(b) L,U, L1, U1 have diagonal 1’s so D = D1. Then L−1
1 L and U1U

−1 are both I .

19




1

1 1

0 1 1







1 1 0

1 1

1


 = LIU ;




a a 0

a a+ b b

0 b b+ c


 = L




a

b

c


U .

A tridiagonal matrix A has bidiagonal factors L and U .
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20 A tridiagonal T has 2 nonzeros in the pivot row and only one nonzero below the pivot

(one operation to find ℓ and then one for the new pivot!). Only 2n operations for

elimination on a tridiagonal matrix. T =bidiagonal L times bidiagonal U .

21 For the first matrix A,L keeps the 3 zeros at the start of rows. But U may not have the

upper zero where A24 = 0. For the second matrix B,L keeps the bottom left zero at

the start of row 4. U keeps the upper right zero at the start of column 4. One zero in A

and two zeros in B are filled in.

22 Eliminating upwards,




5 3 1

3 3 1

1 1 1


 →




4 2 0

2 2 0

1 1 1


 →




2 0 0

2 2 0

1 1 1


 = L. We reach

a lower triangular L, and the multipliers are in an upper triangular U . A = UL with

U =




1 1 1

0 1 1

0 0 1


.

23 The 2 by 2 upper submatrix A2 has the first two pivots 5, 9. Reason: Elimination on A

starts in the upper left corner with elimination on A2.

24 The upper left blocks all factor at the same time as A: Ak is LkUk. So A = LU is

possible only if all those blocks Ak are invertible.

25 The i, j entry of L−1 is j/i for i ≥ j. And Li i−1 is (1− i)/i below the diagonal

26 (K−1)ij = j(n− i+ 1)/(n+ 1) for i ≥ j (and symmetric): Multiply K−1 by n+ 1

(the determinant of K) to see all whole numbers.
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Problem Set 2.7, page 117

1 A =


1 0

9 3


 has AT =


1 9

0 3


 , A−1 =


 1 0

−3 1/3


 , (A−1)T = (AT)−1 =


1 −3

0 1/3


;

A =


1 c

c 0


 has AT = A and A−1 =

1

c2


0 c

c −1


 = (A−1)T.

2 (AB)T =


1 2

3 7


 = BTAT. This answer is different from ATBT (except when

AB = BA and transposing gives BTAT = ATBT).

3 (a) ((AB)−1)T = (B−1A−1)T = (A−1)T(B−1)T. This is also (AT)−1(BT)−1.

(b) If U is upper triangular, so is U−1: then (U−1)T is lower triangular.

4 A =


0 1

0 0


 has A2 = 0. But the diagonal of ATA has dot products of columns of A

with themselves. If ATA = 0, zero dot products ⇒ zero columns ⇒ A = zero matrix.

5 (a) xTAy=
[
0 1

]

1 2 3

4 5 6







0

1

0


=5

(b) This is the row xTA =
[
4 5 6

]
times y.

(c) This is also the row xT times Ay=


2

5


.

6 MT =


A

T CT

BT DT


; MT = M needs AT = A and BT = C and DT = D.

7 (a) False:


 0 A

A 0


 is symmetric only if A = AT.

(b) False: The transpose of AB is BTAT = BA. So (AB)T = AB needs BA = AB.
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(c) True: Invertible symmetric matrices have symmetric inverses! Easiest proof is to

transpose AA−1 = I .

(d) True: (ABC)T is CTBTAT(= CBA for symmetric matrices A,B, and C).

8 The 1 in row 1 has n choices; then the 1 in row 2 has n− 1 choices . . . (n! overall).

9 P1P2 =




0 1 0

0 0 1

1 0 0







1 0 0

0 0 1

0 1 0


 =




0 0 1

0 1 0

1 0 0


 but P2P1 =




0 1 0

1 0 0

0 0 1


.

If P3 and P4 exchange different pairs of rows, P3P4 = P4P3 = both exchanges.

10 (3, 1, 2, 4) and (2, 3, 1, 4) keep 4 in place; 6 more even P ’s keep 1 or 2 or 3 in place;

(2, 1, 4, 3) and (3, 4, 1, 2) and (4, 3, 2, 1) exchange 2 pairs. (1, 2, 3, 4) makes 12.

11 PA =




0 1 0

0 0 1

1 0 0







0 0 6

1 2 3

0 4 5


 =




1 2 3

0 4 5

0 0 6


 is upper triangular. Multiplying A

on the right by a permutation matrix P2 exchanges the columns of A. To make this A

lower triangular, we also need P1 to exchange rows 2 and 3:

P1AP2 =




1

1

1


A




1

1

1


 =




6 0 0

5 4 0

3 2 1


.

12 (Px)T(Py)=xTPTPy=xTy since PTP =I . In general Px·y=x·PTy 6= x·Py:

Non-equality where P 6= PT:




0 1 0

0 0 1

1 0 0







1

2

3


 ·




1

1

2


 6=




1

2

3


 ·




0 1 0

0 0 1

1 0 0







1

1

2


.

13 A cyclic P =




0 1 0

0 0 1

1 0 0


 or its transpose will have P 3 = I : (1, 2, 3) → (2, 3, 1) →

(3, 1, 2) → (1, 2, 3). The permutation P̂ =


1 0

0 P


 for the same P has P̂ 4 = P̂ 6= I.
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14 The “reverse identity” P takes (1, . . . , n) into (n, . . . , 1). When rows and also columns

are reversed, the 1, 1 and n, n entries of A change places in PAP . So do the 1, n and

n, 1 entries. In general (PAP )ij is (A)n−i+1,n−j+1 .

15 (a) If P sends row 1 to row 4, then PT sends row 4 to row 1 (b) P =


E 0

0 E


 =

PT with E =


0 1

1 0


 moves all rows: 1 and 2 are exchanged, 3 and 4 are exchanged.

16 A2−B2 and also ABA are symmetric if A and B are symmetric. But (A+B)(A−B)

and ABAB are generally not symmetric.

17 (a) S =


1 1

1 1


= ST is not invertible (b) S =


0 1

1 1


 needs row exchange

(c) S =


1 1

1 0


 has pivots D =


1 0

0 −1


 : no real square root.

18 (a) 5+ 4+ 3+ 2+ 1 = 15 independent entries if S = ST (b) L has 10 and D has 5;

total 15 in LDLT (c) Zero diagonal if AT = −A, leaving 4+3+2+1 = 10 choices.

19 (a) The transpose of ATSA is ATSTAT T = ATSA = n by n when ST = S (any m

by n matrix A) (b) (ATA)jj = (column j of A)· (column j of A) = (length squared

of column j) ≥ 0.

20


1 3

3 2


 =


1 0

3 1




1 0

0 −7




1 3

0 1


;


1 b

b c


 =


1 0

b 1




1 0

0 c− b2




1 b

0 1







2 −1 0

−1 2 −1

0 −1 2


 =




1

−1

2
1

0 −2

3
1







2

3

2

4

3







1 −1

2
0

1 −2

3

1


 = LDLT.

21 Elimination on a symmetric 3 by 3 matrix leaves a symmetric lower right 2 by 2 matrix.


2 4 8

4 3 9

8 9 0


 and




1 b c

b d e

c e f


 lead to


−5 −7

−7 −32


 and


d− b2 e− bc

e− bc f − c2


 : symmetric!
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22




1

1

1


A =




1

0 1

2 3 1







1 0 1

1 1

−1


;




1

1

1


A =




1

1 1

2 0 1







1 2 0

−1 1

1




23 A =




0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0



= P and L = U = I .

Elimination on this A = P exchanges

rows 1-2 then rows 2-3 then rows 3-4.

24 PA = LU is




1

1

1







0 1 2

0 3 8

2 1 1


 =




1

0 1

0 1/3 1







2 1 1

3 8

−2/3


. If we

wait to exchange and a12 is the pivot,A = L1P1U1 =




1

3 1

1







1

1

1







2 1 1

0 1 2

0 0 2


.

25 One way to decide even vs. odd is to count all pairs that P has in the wrong order. Then

P is even or odd when that count is even or odd. Hard step: Show that an exchange

always switches that count! Then 3 or 5 exchanges will leave that count odd.

26 (a) E21=




1

−3 1

1


puts 0 in the 2, 1 entry ofE21A. ThenE21AE

T
21=




1 0 0

0 2 4

0 4 9




is still symmetric, with zero also in its 1, 2 entry. (b) Now use E32 =




1

1

−2 1




to make the 3, 2 entry zero and E32E21AE
T
21E

T
32 = D also has zero in its 2, 3 entry.

Key point: Elimination from both sides (rows + columns) gives the symmetric LDLT.

27 A =




0 1 2 3

1 2 3 0

2 3 0 1

3 0 1 2




= AT has 0, 1, 2, 3 in every row. I don’t know any rules for a

symmetric construction like this “Hankel matrix” with constant antidiagonals.
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28 Reordering the rows and/or the columns of
[
a b

c d

]
will move the entry a. So the result

cannot be the transpose (which doesn’t move a).

29 (a) Total currents are ATy =




1 0 1

−1 1 0

0 −1 −1







yBC

yCS

yBS


 =




yBC + yBS

−yBC + yCS

−yCS − yBS


.

(b) Either way (Ax)Ty = xT(ATy) = xByBC + xByBS − xCyBC + xCyCS −
xSyCS − xSyBS . Six terms.

30




1 50

40 1000

2 50





x1

x2


 = Ax; ATy =


 1 40 2

50 1000 50







700

3

3000


 =


 6820

188000


 1 truck

1 plane

31 Ax · y is the cost of inputs while x ·ATy is the value of outputs.

32 P 3 = I so three rotations for 360◦; P rotates every v around the (1, 1, 1) line by 120◦.

33


1 2

4 9


 =


1 0

2 1




1 2

2 5


 = EH = (elementary matrix) times (symmetric ma-

trix).

34 L(UT)−1 is lower triangular times lower triangular, so lower triangular. The transpose

of UTDU is UTDTUT T = UTDU again, so UTDU is symmetric. The factorization

multiplies lower triangular by symmetric to get LDU which is A.

35 These are groups: Lower triangular with diagonal 1’s, diagonal invertible D, permuta-

tions P , orthogonal matrices with QT = Q−1.

36 Certainly BT is northwest. B2 is a full matrix! B−1 is southeast:
[
1 1
1 0

]−1
=
[
0 1

1 −1

]
.

The rows of B are in reverse order from a lower triangular L, so B = PL. Then

B−1 = L−1P−1 has the columns in reverse order from L−1. So B−1 is southeast.

Northwest B = PL times southeast PU is (PLP )U = upper triangular.

37 There are n! permutation matrices of order n. Eventually two powers of P must be

the same permutation. And if P r = P s then P r − s = I . Certainly r − s ≤ n!

P =


P2

P3


 is 5 by 5 with P2 =


0 1

1 0


 and P3 =




0 1 0

0 0 1

1 0 0


 and P 6 = I .
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38 To split the matrix M into (symmetric S) + (anti-symmetric A), the only choice is

S = 1
2
(M +MT) and A = 1

2
(M −MT).

39 Start from QTQ = I , as in




qT
1

qT
2





q1 q2


 =




1 0

0 1




(a) The diagonal entries give qT
1 q1 = 1 and qT

2 q2 = 1: unit vectors

(b) The off-diagonal entry is qT
1 q2 = 0 (and in general qT

i qj = 0)

(c) The leading example for Q is the rotation matrix


cos θ − sin θ

sin θ cos θ


.




