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Solutions to Exercises

Problem Set 1.1, page 8
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The combinations give (a) alinein R® (b) aplanein R® (c) all of R3.
v+w = (2,3)and v — w = (6, —1) will be the diagonals of the parallelogram with

v and w as two sides going out from (0, 0).

This problem gives the diagonals v + w and v — w of the parallelogram and asks for

the sides: The opposite of Problem 2. In this example v = (3, 3) and w = (2, —2).
3v 4w = (7,5)and cv + dw = (2¢ + d, c + 2d).

u+v=(-2,3,1)and u+v+w = (0,0,0) and 2u+2v+w = ( add first answers) =
(—2,3,1). The vectors u,v,w are in the same plane because a combination gives

(0,0,0). Stated another way: © = —v — w is in the plane of v and w.

The components of every cv + dw add to zero because the components of v and of w
add to zero. ¢ = 3and d = 9 give (3, 3, —6). There is no solution to cv+dw = (3, 3,6)

because 3 + 3 + 6 is not zero.

The nine combinations ¢(2,1) 4+ d(0,1) withc¢ = 0,1,2 and d = (0,1, 2) will lie on a

lattice. If we took all whole numbers c and d, the lattice would lie over the whole plane.

The other diagonal is v — w (or else w — v). Adding diagonals gives 2v (or 2w).

The fourth corner can be (4, 4) or (4,0) or (-2, 2). Three possible parallelograms!

1 —j = (1,1,0) isin the base (z-y plane). ¢ + 7 + k = (1,1, 1) is the opposite corner

from (0,0,0). Pointsinthecubehave 0 < 2 < 1,0<y <1,0< 2z < 1.

Four more corners (1,1,0), (1,0,1),(0,1,1),(1,1,1). The center point is (1, %, 1).
A (gD and (3.0.4). (3.1 ).

The combinations of ¢ = (1,0,0) and ¢ + j = (1, 1, 0) fill the xy plane in xyz space.

,0),
Centers of faces are (3, %,0), (3, %,1) and (0

Sum = zero vector. Sum = —2:00 vector = 8:00 vector. 2:00 is 30° from horizontal
= (cos Z,sin T) = (v/3/2,1/2).
Moving the origin to 6:00 adds 5 = (0, 1) to every vector. So the sum of twelve vectors

changes from 0 to 125 = (0, 12).
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.3 1 . .
The point i + i is three-fourths of the way to v starting from w. The vector

1 1 . 1 1 .
7Y + i is halfway to u = 7Y + W The vector v + w is 2u (the far corner of the

parallelogram).

All combinations with ¢ + d = 1 are on the line that passes through v and w.

The point V' = —wv + 2w is on that line but it is beyond w.

All vectors cv + cw are on the line passing through (0,0) and uw = 1v + fw. That
line continues out beyond v + w and back beyond (0, 0). With ¢ > 0, half of this line

is removed, leaving a ray that starts at (0, 0).

The combinations cv + dw with 0 < ¢ < 1and 0 < d < 1 fill the parallelogram with
sides v and w. For example, if v = (1,0) and w = (0, 1) then cv + dw fills the unit
square. But when v = (a,0) and w = (b, 0) these combinations only fill a segment of

a line.

With ¢ > 0 and d > 0 we get the infinite “cone” or “wedge” between v and w. For
example, if v = (1,0) and w = (0, 1), then the cone is the whole quadrant z > 0, y >
0. Question: What if w = —wv? The cone opens to a half-space. But the combinations
of v = (1,0) and w = (—1,0) only fill a line.

(@) tu+ 1v + 1w is the center of the triangle between u, v and w; 1w + w lies

between v and w (b) Tofill the triangle keep ¢>0,d>0,e>0,and c+d+e = 1.

The sumis (v —u) + (w —v) + (u—w) = zero vector. Those three sides of a triangle

are in the same plane!
The vector 1 (u + v + w) is outside the pyramid because c +d+ e =1+ 2 + 1 > 1.

All vectors are combinations of u, v, w as drawn (not in the same plane). Start by

seeing that cu + dw fills a plane, then adding ew fills all of R3.

The combinations of « and v fill one plane. The combinations of v and w fill another

plane. Those planes meet in a line: only the vectors cv are in both planes.

(@) For aline, choose u = v = w = any nonzero vector (b) For a plane, choose

w and v in different directions. A combination like w = u + v is in the same plane.
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Solutions to Exercises

Two equations come from the two components: ¢ + 3d = 14 and 2¢ + d = 8. The

solutionis ¢ = 2and d = 4. Then 2(1,2) + 4(3,1) = (14, 8).

A four-dimensional cube has 2* = 16 corners and 2 - 4 = 8 three-dimensional faces

and 24 two-dimensional faces and 32 edges in Worked Example 2.4 A.

There are 6 unknown numbers vy, vo, v3, w1, we, w3. The six equations come from the
components of v + w = (4,5,6) and v — w = (2, 5,8). Add to find 2v = (6, 10, 14)
sov =(3,5,7)and w = (1,0, —1).

Fact: For any three vectors w, v, w in the plane, some combination cu + dv + ew is
the zero vector (beyond the obvious ¢ = d = e = 0). So if there is one combination
Cu—+ Dv+ Fw that produces b, there will be many more—just add ¢, d, e or 2¢, 2d, 2e
to the particular solution C, D, E.

The example has 3u — 2v + w = 3(1,3) — 2(2,7) + 1(1,5) = (0,0). It also has
—2u + lv + 0w = b = (0,1). Adding gives u — v + w = (0,1). In this case ¢, d, e
equal 3,—2,1and C, D, E = —2,1,0.

Could another example have u, v, w that could NOT combine to produce b? Yes. The
vectors (1,1), (2,2), (3, 3) are on a line and no combination produces b. We can easily

solve cu + dv + ew = 0 but not Cu + Dv + Fw = b.

The combinations of v and w fill the plane unless v and w lie on the same line through
(0,0). Four vectors whose combinations fill 4-dimensional space: one example is the

“standard basis” (1,0, 0, 0), (0,1,0,0), (0,0,1,0), and (0,0, 0, 1).
The equations cu + dv + ew = b are
2¢c —d =1 Sod=2e c=3/4

—c+2d —e=0 then ¢ = 3e d=2/4
—d+2e=0 then 4e =1 e=1/4
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Problem Set 1.2, page 18

lu-v=-244+24=0u-w=-6+16=1lLu-(v+w)=u-v4+u-w=
0+l,w-v=4+6=10=v-w.

2 ||lul|=1and ||Jv]| = 5and |w| = /5. Then |u - v| =0 < (1)(5) and |v - w| = 10 <
5v/5, confirming the Schwarz inequality.

3 Unit vectors v/||v|| = (2,2) = (0.8,0.6). The vectors w, (2, —1), and —w make
0°,90°,180° angles with w and w/||lw| = (1/v/5,2/v/5). The cosine of 6 is 2

ot *
w o _
rioy = 10/5V/5.

4@ v-(-v)=—1 (b) Wtw) w-w)=v-vrw-v—v-w-w-w=
1+( )—( )—1=05s060=90° (notice v-w = w-v) ) (v—2w)-(v+2w) =

vev—4dw-w=1—-4=-3.

5 u; = v/|lv|| = (1,3)/vV10 and uy = w/|w| = (2,1,2)/3. Uy = (3,-1)/V/10 is
perpendicular to w; (and so is (—3,1)/4/10). U, could be (1,—2,0)/+/5: There is a
whole plane of vectors perpendicular to u,, and a whole circle of unit vectors in that

plane.

6 All vectors w = (¢, 2¢) are perpendicular to v. They lie on a line. All vectors (z,y, z)
with  + y + z = 0 lie on a plane. All vectors perpendicular to (1,1, 1) and (1,2, 3)

lie on a line in 3-dimensional space.

7 (@) cosf = v-w/|v|||lw] = 1/(2)(1) so § = 60° or w/3 radians  (b) cosd =
0so 6 = 90° or w/2 radians (c) cosf = 2/(2)(2) = 1/2s0 60 = 60° or w/3
(d) cosf = —1/+/250 6 = 135° or 37/4.

8 (a) False: v and w are any vectors in the plane perpendicular to w  (b) True: u -
(v+2w)=u-v+2u-w=0 (c) True, ||lu—v|? = (u—v)-(u—wv)splitsinto
u-ut+v-v=2whenu-v=v-u=0.

9 If vows /v1w; = —1then vaws = —vyw; OF vVywy +vowe = v-w = 0: perpendicular!

The vectors (1, 4) and (1, —1) are perpendicular.
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Solutions to Exercises

Slopes 2/1 and —1/2 multiply to give —1: then v - w = 0 and the vectors (the direc-

tions) are perpendicular.

v - w < 0 means angle > 90°; these w’s fill half of 3-dimensional space.

(1,1) perpendicularto (1,5) —¢(1,1) if (1,1)-(1,5) —¢(1,1) - (1,1) =6 —2c=10o0r
c=3,v:-(w—cv)=0ifc=v-w/v-v. Subtracting cv is the key to constructing
a perpendicular vector.

The plane perpendicular to (1,0, 1) contains all vectors (¢, d, —c). In that plane, v =
(1,0,—1) and w = (0,1, 0) are perpendicular.

One possibility among many: v = (1,-1,0,0),v = (0,0,1,—1),w = (1,1,-1,—-1)
and (1,1,1,1) are perpendicular to each other. “We can rotate those u, v, w in their

3D hyperplane and they will stay perpendicular.”

Lz+y)=(2+8)/2=5and5 > 4; cosf = 2/16/1/10V10 = 8/10.

o> =141+ --4+1=9s50|jv|] =3;u=v/3=(3,...,1)isaunitvector in 9D;
w=(1,-1,0,..., 0)/\/5 is a unit vector in the 8D hyperplane perpendicular to v.
cosa = 1/\/5, cosfB = 0, cosy = —1/\/5. For any vector v = (vq,v2,v3) the
cosines with (1,0,0) and (0, 0, 1) are cos? a+cos? B+cos? v = (vi+v3+v3)/||v]|?= 1.
|v|| = 4% + 22 = 20 and ||w||?> = (—1)? + 22 = 5. Pythagoras is ||(3,4)]|? = 25 =
20 + 5 for the length of the hypotenuse v + w = (3,4).

Start from the rules (1), (2),(3) forv-w =w-vand v - (v + w) and (cv) - w. Use
rule (2) for (v + w) - (v +w) = (v + w) - v + (v + w) - w. By rule (1) this is
ve(v+w)+w-(v+w). Rule (2)againgivesv-v+v-w+w-v+w- -w =
v-v+ 20w+ w-w. Notice v - w = w - v! The main point is to feel free to open

up parentheses.

We know that (v —w) « (v —w) = v-v—2v-w+ w - w. The Law of Cosines writes
|v||||w]| cos @ for v - w. Here @ is the angle between v and w. When 6 < 90° this

v - w is positive, so in this case v - v + w - w is larger than |Jv — w||?.

Pythagoras changes from equality a?+b? = ¢? to inequality when § < 90° or 6 > 90 °.
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21 2v-w < 2||v|||w| leads to |v+w|]? = v-v+2v-wH+w-w < ||v||%+2||v||||w] +
|w]|?. Thisiis (||v|| + |Jw]|)?. Taking square roots gives ||v + w| < ||v|| + ||w]|.
22 v3w? + 2uiwivews + viwi < viw? + v?w? + vawd + viw3 is true (cancel 4 terms)
because the difference is v?w? + v3w? — 2v1wivws Which is (viwy — vowy)? > 0.
23 cos B = wy/||w| and sin 8 = ws /||w]|. Then cos(8—a) = cos 3 cos a+sin B sina =
viwy /||v]l[|w] + vews/||v]|[Jw] = v - w/||v]|||w]||. This is cos 6 because 5 — « = 6.
24 Example 6 gives |uq||U3| < L(u? + U2) and |us||Us| < §(u3 + U2). The whole line
becomes .96 < (.6)(.8) + (.8)(.6) < 3(.62 + .8%) + (.8% +.62) = 1. True: .96 < 1.
25 The cosine of 8 is x/\/m, near side over hypotenuse. Then | cos 8|2 is not greater
than 1: 22 /(2% + ¢?) < 1.
26-27 (with apologies for that typo!) These two lines add to 2||v||? + 2||w]||?:
v+ w|?=@w+w) v+w)=v-v+v - wtw v+w- w
v —w|P=@w-w) - v-—w)=v-v—v wW-—w - v+w- w
28 The vectors w = (z,y) with (1,2) - w = x + 2y = 5 lie on a line in the zy plane. The
shortest w on that line is (1, 2). (The Schwarz inequality ||w|| > v - w/||v| = V/5 is
an equality when cos# = 0 and w = (1,2) and ||w| = v/5.)
29 The length ||v — w]| is between 2 and 8 (triangle inequality when ||v|| = 5 and ||w]|| =

3). The dot product v - w is between —15 and 15 by the Schwarz inequality.

30 Three vectors in the plane could make angles greater than 90° with each other: for
example (1,0),(—1,4), (—1,—4). Four vectors could not do this (360° total angle).
How many can do this in R? or R"? Ben Harris and Greg Marks showed me that the
answer is n + 1. The vectors from the center of a regular simplex in R™ to its n + 1
vertices all have negative dot products. If n+2 vectors in R™ had negative dot products,
project them onto the plane orthogonal to the last one. Now you have n + 1 vectors in
R~ with negative dot products. Keep going to 4 vectors in R? : no way!

31 For a specific example, pick v = (1,2, —3) and then w = (-3, 1, 2). In this example
cosh = v - w/|v|||w| = -7/v14v/14 = —1/2 and § = 120° . This always
happens when z +y + z = 0:



8 Solutions to Exercises

1 1
v.w:xz+xy+yz:§(x+y+z)2_§(x2+y2+22)

. 1 1
This is the sameasv-w =0— 5 [lv|l||w]]. Then cosf = 3

32 Wikipedia gives this proof of geometric mean G = ¥/zyz < arithmetic mean
A = (x 4+ y + z)/3. First there is equality in case + = y = z. Otherwise A is

somewhere between the three positive numbers, say for example z < A < y.

Use the known inequality g < a for the two positive numbers x and y + z — A. Their
meana = L(z+y+z— A)is £(34 — A) = same as A! S0 a > g says that
A3 > gPA=z2(y+2z—A)A But (y+2z— A)A = (y — A)(A — 2) + yz > yz.

Substitute to find A® > xyz = G2 as we wanted to prove. Not easy!

There are many proofs of G = (a2 - - -a:n)l/" <A=(x14+z2+---+x,)/n In
calculus you are maximizing G on the plane 1 + 3 + - - - + x,, = n. The maximum

occurs when all z’s are equal.

33 The columns of the 4 by 4 “Hadamard matrix” (times %) are perpendicular unit

vectors:
11 1 1]
111 -1 1 -1
ZH ==
201 1 -1 -1
1 -1 -1 1]

34 The commands V = randn (3, 30); D = sqrt (diag (V' x V)); U = V\D; will give
30 random unit vectors in the columns of U. Then w’ = U is a row matrix of 30 dot

products whose average absolute value should be close to 2/7.

Problem Set 1.3, page 29

1 3s1 + 482 + 5s3 = (3,7, 12). The same vector b comes from S times = (3,4, 5):
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1 0 0| (3 (row1)-x 3
1 1 0f (4] =|(row2)-x|=| 7
1 1 1| |5 (row 2) - x 12

2 The solutionsare y; = 1, yo = 0, y3 = 0 (right side = column 1) and y; = 1, 2 = 3,

y3 = 5. That second example illustrates that the first n odd numbers add to n2.

(i =B v = B 1 0 0| |B;

3 Y1ty = B, (gives y, = —B; +B, =1-1 1 0| [B2

y1+y2+ys = Bs ys = —By +Bs 0 —1 1| |Bs
100 1 00

Theinverseof S=|1 1 0|isA=|-1 1 0/:independentcolumnsin Aand.S!
111 0-1 1

4 The combination 0w, + Owsy + Ows always gives the zero vector, but this problem
looks for other zero combinations (then the vectors are dependent, they lie in a plane):

ws = (w; + w3)/2 so one combination that gives zero is w; — 2wy + w3 = 0.

5 The rows of the 3 by 3 matrix in Problem 4 must also be dependent: ro = & (ry + r3).
The column and row combinations that produce 0 are the same: this is unusual. Two

solutions to y171 + yoras + y3rs = 0 are (Yl, Yo, Yg) = (1, -2, 1) and (2, —4, 2)

1 1 0
6 c=3 3 2 1| hascolumn3 = column1 — column 2

7T 4 3
1 0-1

c=-—1 1 1 0] hascolumn3 = — column 1+ column 2
0 1 1
0O 0 O

c=0 2 1 5| hascolumn3 =3 (column 1) — column 2
3 3 6
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7 All three rows are perpendicular to the solution x (the three equations r; - = 0 and

ro-x = 0and r3-x = 0 tell us this). Then the whole plane of the rows is perpendicular

to x (the plane is also perpendicular to all multiples cx).

{171—0

T2 — 1
8

Tr3 — T2

Tg — T3

by
bo
b3
by

Tl

Z2

zs3

Ty

- b 1
— b+ by e
= by + by + by S
= bbby by |1

0
1
1
1

= o O

= o O O

b1
bo
b3
by

~1p

9 The cyclic difference matrix C has a line of solutions (in 4 dimensions) to Cx = 0:

22—z
10 25— 2

0—23

11

b1

b3

x1

_b3

when x =

any constant vector.

by
by
b3

=A"'b

The forward differences of the squares are (t + 1) — 2 =t + 2t + 1 — 2 = 2t + 1.

Differences of the nth power are (t + 1)" — ¢" = ¢ — " + nt"~1 4. ... The leading

term is the derivative nt"~*. The binomial theorem gives all the terms of (¢ + 1)™.

12

Z1

T2

zs3

T4

b1
bo
b3

by |

First
solve
T = b1

—T3 = b4

Z1

T2

zs3

T4

Centered difference matrices of even size seem to be invertible. Look at egns. 1 and 4:

__b2 _54_
b1

by
b1 + b3_

13 Odd size: The five centered difference equations lead to b, + b3 + b5 = 0.
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) :bl
xg—x1:b2
$4—$2:b3
$5—$3:b4

—$4:b5

11

Add equations 1, 3,5
The left side of the sum is zero
The right side is by + bs + bs

There cannot be a solution unless b + b3 + bs = 0.

14 Anexampleis (a,b) = (3,6) and (c,d) = (1,2). We are given that the ratios a/c and

b/d are equal. Then ad = be. Then (when you divide by bd) the ratios a/b and ¢/d

must also be equal!





