INTRODUCTION

LINEAR

 ALGEBRAFifth Edition

MANUAL FOR INSTRUCTORS

Gilbert Strang

Massachusetts Institute of Technology
math.mit.edu/linearalgebra
web.mit.edu/18.06
video lectures: ocw.mit.edu
math.mit.edu/~gs
www.wellesleycambridge.com email: linearalgebrabook @ gmail.com

Wellesley - Cambridge Press
Box 812060
Wellesley, Massachusetts 02482

Problem Set 1.1, page 8

1 The combinations give (a) a line in \mathbf{R}^{3}
(b) a plane in \mathbf{R}^{3} (c) all of \mathbf{R}^{3}.
$2 \boldsymbol{v}+\boldsymbol{w}=(2,3)$ and $\boldsymbol{v}-\boldsymbol{w}=(6,-1)$ will be the diagonals of the parallelogram with \boldsymbol{v} and \boldsymbol{w} as two sides going out from $(0,0)$.

3 This problem gives the diagonals $\boldsymbol{v}+\boldsymbol{w}$ and $\boldsymbol{v}-\boldsymbol{w}$ of the parallelogram and asks for the sides: The opposite of Problem 2. In this example $\boldsymbol{v}=(3,3)$ and $\boldsymbol{w}=(2,-2)$.
$43 \boldsymbol{v}+\boldsymbol{w}=(7,5)$ and $c \boldsymbol{v}+d \boldsymbol{w}=(2 c+d, c+2 d)$.
$5 \boldsymbol{u}+\boldsymbol{v}=(-2,3,1)$ and $\boldsymbol{u}+\boldsymbol{v}+\boldsymbol{w}=(0,0,0)$ and $2 \boldsymbol{u}+2 \boldsymbol{v}+\boldsymbol{w}=($ add first answers $)=$ $(-2,3,1)$. The vectors $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ are in the same plane because a combination gives $(0,0,0)$. Stated another way: $\boldsymbol{u}=-\boldsymbol{v}-\boldsymbol{w}$ is in the plane of \boldsymbol{v} and \boldsymbol{w}.

6 The components of every $c \boldsymbol{v}+d \boldsymbol{w}$ add to zero because the components of \boldsymbol{v} and of \boldsymbol{w} add to zero. $c=3$ and $d=9$ give $(3,3,-6)$. There is no solution to $c \boldsymbol{v}+d \boldsymbol{w}=(3,3,6)$ because $3+3+6$ is not zero.

7 The nine combinations $c(2,1)+d(0,1)$ with $c=0,1,2$ and $d=(0,1,2)$ will lie on a lattice. If we took all whole numbers c and d, the lattice would lie over the whole plane.

8 The other diagonal is $\boldsymbol{v}-\boldsymbol{w}$ (or else $\boldsymbol{w}-\boldsymbol{v}$). Adding diagonals gives $2 \boldsymbol{v}$ (or $2 \boldsymbol{w}$).
9 The fourth corner can be $(4,4)$ or $(4,0)$ or $(-2,2)$. Three possible parallelograms!
$10 \boldsymbol{i}-\boldsymbol{j}=(1,1,0)$ is in the base ($x-y$ plane). $\boldsymbol{i}+\boldsymbol{j}+\boldsymbol{k}=(1,1,1)$ is the opposite corner from $(0,0,0)$. Points in the cube have $0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1$.

11 Four more corners $(1,1,0),(1,0,1),(0,1,1),(1,1,1)$. The center point is $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$. Centers of faces are $\left(\frac{1}{2}, \frac{1}{2}, 0\right),\left(\frac{1}{2}, \frac{1}{2}, 1\right)$ and $\left(0, \frac{1}{2}, \frac{1}{2}\right),\left(1, \frac{1}{2}, \frac{1}{2}\right)$ and $\left(\frac{1}{2}, 0, \frac{1}{2}\right),\left(\frac{1}{2}, 1, \frac{1}{2}\right)$.

12 The combinations of $\boldsymbol{i}=(1,0,0)$ and $\boldsymbol{i}+\boldsymbol{j}=(1,1,0)$ fill the $x y$ plane in $x y z$ space.
13 Sum $=$ zero vector. Sum $=-2: 00$ vector $=8: 00$ vector. 2:00 is 30° from horizontal $=\left(\cos \frac{\pi}{6}, \sin \frac{\pi}{6}\right)=(\sqrt{3} / 2,1 / 2)$.

14 Moving the origin to $6: 00$ adds $\boldsymbol{j}=(0,1)$ to every vector. So the sum of twelve vectors changes from $\mathbf{0}$ to $12 \boldsymbol{j}=(0,12)$.

15 The point $\frac{3}{4} \boldsymbol{v}+\frac{1}{4} \boldsymbol{w}$ is three-fourths of the way to \boldsymbol{v} starting from \boldsymbol{w}. The vector $\frac{1}{4} \boldsymbol{v}+\frac{1}{4} \boldsymbol{w}$ is halfway to $\boldsymbol{u}=\frac{1}{2} \boldsymbol{v}+\frac{1}{2} \boldsymbol{w}$. The vector $\boldsymbol{v}+\boldsymbol{w}$ is $2 \boldsymbol{u}$ (the far corner of the parallelogram).

16 All combinations with $c+d=1$ are on the line that passes through \boldsymbol{v} and \boldsymbol{w}. The point $\boldsymbol{V}=-\boldsymbol{v}+2 \boldsymbol{w}$ is on that line but it is beyond \boldsymbol{w}.

17 All vectors $c \boldsymbol{v}+c \boldsymbol{w}$ are on the line passing through (0,0) and $\boldsymbol{u}=\frac{1}{2} \boldsymbol{v}+\frac{1}{2} \boldsymbol{w}$. That line continues out beyond $\boldsymbol{v}+\boldsymbol{w}$ and back beyond $(0,0)$. With $c \geq 0$, half of this line is removed, leaving a ray that starts at $(0,0)$.

18 The combinations $c \boldsymbol{v}+d \boldsymbol{w}$ with $0 \leq c \leq 1$ and $0 \leq d \leq 1$ fill the parallelogram with sides \boldsymbol{v} and \boldsymbol{w}. For example, if $\boldsymbol{v}=(1,0)$ and $\boldsymbol{w}=(0,1)$ then $c \boldsymbol{v}+d \boldsymbol{w}$ fills the unit square. But when $\boldsymbol{v}=(a, 0)$ and $\boldsymbol{w}=(b, 0)$ these combinations only fill a segment of a line.

19 With $c \geq 0$ and $d \geq 0$ we get the infinite "cone" or "wedge" between \boldsymbol{v} and \boldsymbol{w}. For example, if $\boldsymbol{v}=(1,0)$ and $\boldsymbol{w}=(0,1)$, then the cone is the whole quadrant $x \geq 0, y \geq$ 0. Question: What if $\boldsymbol{w}=-\boldsymbol{v}$? The cone opens to a half-space. But the combinations of $\boldsymbol{v}=(1,0)$ and $\boldsymbol{w}=(-1,0)$ only fill a line.

20 (a) $\frac{1}{3} \boldsymbol{u}+\frac{1}{3} \boldsymbol{v}+\frac{1}{3} \boldsymbol{w}$ is the center of the triangle between $\boldsymbol{u}, \boldsymbol{v}$ and $\boldsymbol{w} ; \frac{1}{2} \boldsymbol{u}+\frac{1}{2} \boldsymbol{w}$ lies between \boldsymbol{u} and $\boldsymbol{w} \quad$ (b) To fill the triangle keep $c \geq 0, d \geq 0, e \geq 0$, and $c+d+e=\mathbf{1}$.

21 The sum is $(\boldsymbol{v}-\boldsymbol{u})+(\boldsymbol{w}-\boldsymbol{v})+(\boldsymbol{u}-\boldsymbol{w})=$ zero vector. Those three sides of a triangle are in the same plane!

22 The vector $\frac{1}{2}(\boldsymbol{u}+\boldsymbol{v}+\boldsymbol{w})$ is outside the pyramid because $c+d+e=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}>1$.
23 All vectors are combinations of $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ as drawn (not in the same plane). Start by seeing that $c \boldsymbol{u}+d \boldsymbol{v}$ fills a plane, then adding $e \boldsymbol{w}$ fills all of \mathbf{R}^{3}.

24 The combinations of \boldsymbol{u} and \boldsymbol{v} fill one plane. The combinations of \boldsymbol{v} and \boldsymbol{w} fill another plane. Those planes meet in a line: only the vectors $c \boldsymbol{v}$ are in both planes.

25 (a) For a line, choose $\boldsymbol{u}=\boldsymbol{v}=\boldsymbol{w}=$ any nonzero vector \quad (b) For a plane, choose \boldsymbol{u} and \boldsymbol{v} in different directions. A combination like $\boldsymbol{w}=\boldsymbol{u}+\boldsymbol{v}$ is in the same plane.

26 Two equations come from the two components: $c+3 d=14$ and $2 c+d=8$. The solution is $c=2$ and $d=4$. Then $2(1,2)+4(3,1)=(14,8)$.

27 A four-dimensional cube has $2^{4}=16$ corners and $2 \cdot 4=8$ three-dimensional faces and 24 two-dimensional faces and 32 edges in Worked Example 2.4 A.

28 There are $\mathbf{6}$ unknown numbers $v_{1}, v_{2}, v_{3}, w_{1}, w_{2}, w_{3}$. The six equations come from the components of $\boldsymbol{v}+\boldsymbol{w}=(4,5,6)$ and $\boldsymbol{v}-\boldsymbol{w}=(2,5,8)$. Add to find $2 \boldsymbol{v}=(6,10,14)$ so $\boldsymbol{v}=(3,5,7)$ and $\boldsymbol{w}=(1,0,-1)$.

29 Fact: For any three vectors $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ in the plane, some combination $c \boldsymbol{u}+d \boldsymbol{v}+e \boldsymbol{w}$ is the zero vector (beyond the obvious $c=d=e=0$). So if there is one combination $C \boldsymbol{u}+D \boldsymbol{v}+E \boldsymbol{w}$ that produces \boldsymbol{b}, there will be many more-just add c, d, e or $2 c, 2 d, 2 e$ to the particular solution C, D, E.

The example has $3 \boldsymbol{u}-2 \boldsymbol{v}+\boldsymbol{w}=3(1,3)-2(2,7)+1(1,5)=(0,0)$. It also has $-2 \boldsymbol{u}+1 \boldsymbol{v}+0 \boldsymbol{w}=\boldsymbol{b}=(0,1)$. Adding gives $\boldsymbol{u}-\boldsymbol{v}+\boldsymbol{w}=(0,1)$. In this case c, d, e equal $3,-2,1$ and $C, D, E=-2,1,0$.

Could another example have $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ that could NOT combine to produce \boldsymbol{b} ? Yes. The vectors $(1,1),(2,2),(3,3)$ are on a line and no combination produces \boldsymbol{b}. We can easily solve $c \boldsymbol{u}+d \boldsymbol{v}+e \boldsymbol{w}=0$ but not $C \boldsymbol{u}+D \boldsymbol{v}+E \boldsymbol{w}=\boldsymbol{b}$.

30 The combinations of \boldsymbol{v} and \boldsymbol{w} fill the plane unless \boldsymbol{v} and \boldsymbol{w} lie on the same line through $(0,0)$. Four vectors whose combinations fill 4 -dimensional space: one example is the "standard basis" $(1,0,0,0),(0,1,0,0),(0,0,1,0)$, and $(0,0,0,1)$.

31 The equations $c \boldsymbol{u}+d \boldsymbol{v}+e \boldsymbol{w}=\boldsymbol{b}$ are

$$
\begin{array}{rlr}
2 c-d=1 & \text { So } d=2 e & c=3 / 4 \\
-c+2 d-e=0 & \text { then } c=3 e & d=2 / 4 \\
-d+2 e=0 & \text { then } 4 e=1 & e=1 / 4
\end{array}
$$

Problem Set 1.2, page 18

$\mathbf{1} \boldsymbol{u} \cdot \boldsymbol{v}=-2.4+2.4=0, \boldsymbol{u} \cdot \boldsymbol{w}=-.6+1.6=1, \boldsymbol{u} \cdot(\boldsymbol{v}+\boldsymbol{w})=\boldsymbol{u} \cdot \boldsymbol{v}+\boldsymbol{u} \cdot \boldsymbol{w}=$ $0+1, \boldsymbol{w} \cdot \boldsymbol{v}=4+6=10=\boldsymbol{v} \cdot \boldsymbol{w}$.
$2\|\boldsymbol{u}\|=1$ and $\|\boldsymbol{v}\|=5$ and $\|\boldsymbol{w}\|=\sqrt{5}$. Then $|\boldsymbol{u} \cdot \boldsymbol{v}|=0<(1)(5)$ and $|\boldsymbol{v} \cdot \boldsymbol{w}|=10<$ $5 \sqrt{5}$, confirming the Schwarz inequality.

3 Unit vectors $\boldsymbol{v} /\|\boldsymbol{v}\|=\left(\frac{4}{5}, \frac{3}{5}\right)=(0.8,0.6)$. The vectors $\boldsymbol{w},(2,-1)$, and $-\boldsymbol{w}$ make $0^{\circ}, 90^{\circ}, 180^{\circ}$ angles with \boldsymbol{w} and $\boldsymbol{w} /\|\boldsymbol{w}\|=(1 / \sqrt{5}, 2 / \sqrt{5})$. The cosine of θ is $\frac{\boldsymbol{v}}{\|\boldsymbol{v}\|}$. $\frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}=10 / 5 \sqrt{5}$.

4 (a) $\boldsymbol{v} \cdot(-\boldsymbol{v})=-\mathbf{1} \quad$ (b) $(\boldsymbol{v}+\boldsymbol{w}) \cdot(\boldsymbol{v}-\boldsymbol{w})=\boldsymbol{v} \cdot \boldsymbol{v}+\boldsymbol{w} \cdot \boldsymbol{v}-\boldsymbol{v} \cdot \boldsymbol{w}-\boldsymbol{w} \cdot \boldsymbol{w}=$ $1+(\quad)-(\quad)-1=\mathbf{0}$ so $\theta=90^{\circ}($ notice $\boldsymbol{v} \cdot \boldsymbol{w}=\boldsymbol{w} \cdot \boldsymbol{v}) \quad($ c) $\quad(\boldsymbol{v}-2 \boldsymbol{w}) \cdot(\boldsymbol{v}+2 \boldsymbol{w})=$ $\boldsymbol{v} \cdot \boldsymbol{v}-4 \boldsymbol{w} \cdot \boldsymbol{w}=1-4=\mathbf{- 3}$.
$5 \boldsymbol{u}_{1}=\boldsymbol{v} /\|\boldsymbol{v}\|=(1,3) / \sqrt{10}$ and $\boldsymbol{u}_{2}=\boldsymbol{w} /\|\boldsymbol{w}\|=(2,1,2) / 3 . \boldsymbol{U}_{1}=(3,-1) / \sqrt{10}$ is perpendicular to \boldsymbol{u}_{1} (and so is $(-3,1) / \sqrt{10}$). \boldsymbol{U}_{2} could be $(1,-2,0) / \sqrt{5}$: There is a whole plane of vectors perpendicular to \boldsymbol{u}_{2}, and a whole circle of unit vectors in that plane.

6 All vectors $\boldsymbol{w}=(c, 2 c)$ are perpendicular to \boldsymbol{v}. They lie on a line. All vectors (x, y, z) with $x+y+z=0$ lie on a plane. All vectors perpendicular to $(1,1,1)$ and $(1,2,3)$ lie on a line in 3-dimensional space.

7 (a) $\cos \theta=\boldsymbol{v} \cdot \boldsymbol{w} /\|\boldsymbol{v}\|\|\boldsymbol{w}\|=1 /(2)(1)$ so $\theta=60^{\circ}$ or $\pi / 3$ radians \quad (b) $\cos \theta=$ 0 so $\theta=90^{\circ}$ or $\pi / 2$ radians (c) $\cos \theta=2 /(2)(2)=1 / 2$ so $\theta=60^{\circ}$ or $\pi / 3$ (d) $\cos \theta=-1 / \sqrt{2}$ so $\theta=135^{\circ}$ or $3 \pi / 4$.

8 (a) False: \boldsymbol{v} and \boldsymbol{w} are any vectors in the plane perpendicular to \boldsymbol{u} (b) True: \boldsymbol{u} • $(\boldsymbol{v}+2 \boldsymbol{w})=\boldsymbol{u} \cdot \boldsymbol{v}+2 \boldsymbol{u} \cdot \boldsymbol{w}=0 \quad$ (c) True, $\|\boldsymbol{u}-\boldsymbol{v}\|^{2}=(\boldsymbol{u}-\boldsymbol{v}) \cdot(\boldsymbol{u}-\boldsymbol{v})$ splits into $\boldsymbol{u} \cdot \boldsymbol{u}+\boldsymbol{v} \cdot \boldsymbol{v}=\mathbf{2}$ when $\boldsymbol{u} \cdot \boldsymbol{v}=\boldsymbol{v} \cdot \boldsymbol{u}=0$.

9 If $v_{2} w_{2} / v_{1} w_{1}=-1$ then $v_{2} w_{2}=-v_{1} w_{1}$ or $v_{1} w_{1}+v_{2} w_{2}=\boldsymbol{v} \cdot \boldsymbol{w}=0$: perpendicular! The vectors $(1,4)$ and $\left(1,-\frac{1}{4}\right)$ are perpendicular.

10 Slopes $2 / 1$ and $-1 / 2$ multiply to give -1 : then $\boldsymbol{v} \cdot \boldsymbol{w}=0$ and the vectors (the directions) are perpendicular.
$11 \boldsymbol{v} \cdot \boldsymbol{w}<0$ means angle $>90^{\circ}$; these \boldsymbol{w} 's fill half of 3 -dimensional space.
$12(1,1)$ perpendicular to $(1,5)-c(1,1)$ if $(1,1) \cdot(1,5)-c(1,1) \cdot(1,1)=6-2 c=0$ or $\boldsymbol{c}=\mathbf{3} ; \boldsymbol{v} \cdot(\boldsymbol{w}-c \boldsymbol{v})=0$ if $c=\boldsymbol{v} \cdot \boldsymbol{w} / \boldsymbol{v} \cdot \boldsymbol{v}$. Subtracting $c \boldsymbol{v}$ is the key to constructing a perpendicular vector.

13 The plane perpendicular to $(1,0,1)$ contains all vectors $(c, d,-c)$. In that plane, $\boldsymbol{v}=$ $(1,0,-1)$ and $\boldsymbol{w}=(0,1,0)$ are perpendicular.

14 One possibility among many: $\boldsymbol{u}=(1,-1,0,0), \boldsymbol{v}=(0,0,1,-1), \boldsymbol{w}=(1,1,-1,-1)$ and $(1,1,1,1)$ are perpendicular to each other. "We can rotate those $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ in their 3D hyperplane and they will stay perpendicular."
$15 \frac{1}{2}(x+y)=(2+8) / 2=5$ and $5>4 ; \cos \theta=2 \sqrt{16} / \sqrt{10} \sqrt{10}=\mathbf{8} / \mathbf{1 0}$.
$16\|\boldsymbol{v}\|^{2}=1+1+\cdots+1=9$ so $\|\boldsymbol{v}\|=\mathbf{3} ; \boldsymbol{u}=\boldsymbol{v} / 3=\left(\frac{1}{3}, \ldots, \frac{1}{3}\right)$ is a unit vector in 9D; $\boldsymbol{w}=(1,-1,0, \ldots, 0) / \sqrt{2}$ is a unit vector in the 8 D hyperplane perpendicular to \boldsymbol{v}.
$17 \cos \alpha=1 / \sqrt{2}, \cos \beta=0, \cos \gamma=-1 / \sqrt{2}$. For any vector $\boldsymbol{v}=\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right)$ the cosines with $(1,0,0)$ and $(0,0,1)$ are $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=\left(v_{1}^{2}+v_{2}^{2}+v_{3}^{2}\right) /\|\boldsymbol{v}\|^{2}=1$.
$18\|\boldsymbol{v}\|^{2}=4^{2}+2^{2}=20$ and $\|\boldsymbol{w}\|^{2}=(-1)^{2}+2^{2}=5$. Pythagoras is $\|(3,4)\|^{2}=25=$ $20+5$ for the length of the hypotenuse $\boldsymbol{v}+\boldsymbol{w}=(3,4)$.

19 Start from the rules (1), (2), (3) for $\boldsymbol{v} \cdot \boldsymbol{w}=\boldsymbol{w} \cdot \boldsymbol{v}$ and $\boldsymbol{u} \cdot(\boldsymbol{v}+\boldsymbol{w})$ and $(c \boldsymbol{v}) \cdot \boldsymbol{w}$. Use rule (2) for $(\boldsymbol{v}+\boldsymbol{w}) \cdot(\boldsymbol{v}+\boldsymbol{w})=(\boldsymbol{v}+\boldsymbol{w}) \cdot \boldsymbol{v}+(\boldsymbol{v}+\boldsymbol{w}) \cdot \boldsymbol{w}$. By rule (1) this is $\boldsymbol{v} \cdot(\boldsymbol{v}+\boldsymbol{w})+\boldsymbol{w} \cdot(\boldsymbol{v}+\boldsymbol{w})$. Rule (2) again gives $\boldsymbol{v} \cdot \boldsymbol{v}+\boldsymbol{v} \cdot \boldsymbol{w}+\boldsymbol{w} \cdot \boldsymbol{v}+\boldsymbol{w} \cdot \boldsymbol{w}=$ $\boldsymbol{v} \cdot \boldsymbol{v}+2 \boldsymbol{v} \cdot \boldsymbol{w}+\boldsymbol{w} \cdot \boldsymbol{w}$. Notice $\boldsymbol{v} \cdot \boldsymbol{w}=\boldsymbol{w} \cdot \boldsymbol{v}$! The main point is to feel free to open up parentheses.

20 We know that $(\boldsymbol{v}-\boldsymbol{w}) \cdot(\boldsymbol{v}-\boldsymbol{w})=\boldsymbol{v} \cdot \boldsymbol{v}-2 \boldsymbol{v} \cdot \boldsymbol{w}+\boldsymbol{w} \cdot \boldsymbol{w}$. The Law of Cosines writes $\|\boldsymbol{v}\|\|\boldsymbol{w}\| \cos \theta$ for $\boldsymbol{v} \cdot \boldsymbol{w}$. Here θ is the angle between \boldsymbol{v} and \boldsymbol{w}. When $\theta<90^{\circ}$ this $\boldsymbol{v} \cdot \boldsymbol{w}$ is positive, so in this case $\boldsymbol{v} \cdot \boldsymbol{v}+\boldsymbol{w} \cdot \boldsymbol{w}$ is larger than $\|\boldsymbol{v}-\boldsymbol{w}\|^{2}$.

Pythagoras changes from equality $a^{2}+b^{2}=c^{2}$ to inequality when $\theta<90^{\circ}$ or $\theta>90^{\circ}$.
$212 \boldsymbol{v} \cdot \boldsymbol{w} \leq 2\|\boldsymbol{v}\|\|\boldsymbol{w}\|$ leads to $\|\boldsymbol{v}+\boldsymbol{w}\|^{2}=\boldsymbol{v} \cdot \boldsymbol{v}+2 \boldsymbol{v} \cdot \boldsymbol{w}+\boldsymbol{w} \cdot \boldsymbol{w} \leq\|\boldsymbol{v}\|^{2}+2\|\boldsymbol{v}\|\|\boldsymbol{w}\|+$ $\|\boldsymbol{w}\|^{2}$. This is $(\|\boldsymbol{v}\|+\|\boldsymbol{w}\|)^{2}$. Taking square roots gives $\|\boldsymbol{v}+\boldsymbol{w}\| \leq\|\boldsymbol{v}\|+\|\boldsymbol{w}\|$.
$22 v_{1}^{2} w_{1}^{2}+2 v_{1} w_{1} v_{2} w_{2}+v_{2}^{2} w_{2}^{2} \leq v_{1}^{2} w_{1}^{2}+v_{1}^{2} w_{2}^{2}+v_{2}^{2} w_{1}^{2}+v_{2}^{2} w_{2}^{2}$ is true (cancel 4 terms) because the difference is $v_{1}^{2} w_{2}^{2}+v_{2}^{2} w_{1}^{2}-2 v_{1} w_{1} v_{2} w_{2}$ which is $\left(v_{1} w_{2}-v_{2} w_{1}\right)^{2} \geq 0$.
$23 \cos \beta=w_{1} /\|\boldsymbol{w}\|$ and $\sin \beta=w_{2} /\|\boldsymbol{w}\|$. Then $\cos (\beta-a)=\cos \beta \cos \alpha+\sin \beta \sin \alpha=$ $v_{1} w_{1} /\|\boldsymbol{v}\|\|\boldsymbol{w}\|+v_{2} w_{2} /\|\boldsymbol{v}\|\|\boldsymbol{w}\|=\boldsymbol{v} \cdot \boldsymbol{w} /\|\boldsymbol{v}\|\|\boldsymbol{w}\|$. This is $\cos \theta$ because $\beta-\alpha=\theta$.

24 Example 6 gives $\left|u_{1}\right|\left|U_{1}\right| \leq \frac{1}{2}\left(u_{1}^{2}+U_{1}^{2}\right)$ and $\left|u_{2}\right|\left|U_{2}\right| \leq \frac{1}{2}\left(u_{2}^{2}+U_{2}^{2}\right)$. The whole line becomes $.96 \leq(.6)(.8)+(.8)(.6) \leq \frac{1}{2}\left(.6^{2}+.8^{2}\right)+\frac{1}{2}\left(.8^{2}+.6^{2}\right)=1$. True: $.96<1$.

25 The cosine of θ is $x / \sqrt{x^{2}+y^{2}}$, near side over hypotenuse. Then $|\cos \theta|^{2}$ is not greater than 1: $x^{2} /\left(x^{2}+y^{2}\right) \leq 1$.
26-27 (with apologies for that typo !) These two lines add to $2\|\boldsymbol{v}\|^{2}+2\|\boldsymbol{w}\|^{2}$:

$$
\begin{aligned}
&\|\boldsymbol{v}+\boldsymbol{w}\|^{2}=(\boldsymbol{v}+\boldsymbol{w}) \cdot(\boldsymbol{v}+\boldsymbol{w})=\boldsymbol{v} \cdot \boldsymbol{v}+\boldsymbol{v} \cdot \boldsymbol{w}+\boldsymbol{w} \cdot \boldsymbol{v}+\boldsymbol{w} \cdot \boldsymbol{w} \\
&\|\boldsymbol{v}-\boldsymbol{w}\|^{2}=(\boldsymbol{v}-\boldsymbol{w}) \cdot(\boldsymbol{v}-\boldsymbol{w})=\boldsymbol{v} \cdot \boldsymbol{v}-\boldsymbol{v} \cdot \boldsymbol{w}-\boldsymbol{w} \cdot \boldsymbol{v}+\boldsymbol{w} \cdot \boldsymbol{w}
\end{aligned}
$$

28 The vectors $\boldsymbol{w}=(x, y)$ with $(1,2) \cdot \boldsymbol{w}=x+2 y=5$ lie on a line in the $x y$ plane. The shortest \boldsymbol{w} on that line is $(1,2)$. (The Schwarz inequality $\|\boldsymbol{w}\| \geq \boldsymbol{v} \cdot \boldsymbol{w} /\|\boldsymbol{v}\|=\sqrt{5}$ is an equality when $\cos \theta=0$ and $\boldsymbol{w}=(1,2)$ and $\|\boldsymbol{w}\|=\sqrt{5}$.)

29 The length $\|\boldsymbol{v}-\boldsymbol{w}\|$ is between 2 and 8 (triangle inequality when $\|\boldsymbol{v}\|=5$ and $\|\boldsymbol{w}\|=$ 3). The dot product $\boldsymbol{v} \cdot \boldsymbol{w}$ is between -15 and 15 by the Schwarz inequality.

30 Three vectors in the plane could make angles greater than 90° with each other: for example $(1,0),(-1,4),(-1,-4)$. Four vectors could not do this $\left(360^{\circ}\right.$ total angle). How many can do this in \mathbf{R}^{3} or \mathbf{R}^{n} ? Ben Harris and Greg Marks showed me that the answer is $n+1$. The vectors from the center of a regular simplex in \mathbf{R}^{n} to its $n+1$ vertices all have negative dot products. If $n+2$ vectors in \mathbf{R}^{n} had negative dot products, project them onto the plane orthogonal to the last one. Now you have $n+1$ vectors in \mathbf{R}^{n-1} with negative dot products. Keep going to 4 vectors in \mathbf{R}^{2} : no way!

31 For a specific example, pick $\boldsymbol{v}=(1,2,-3)$ and then $\boldsymbol{w}=(-3,1,2)$. In this example $\cos \theta=\boldsymbol{v} \cdot \boldsymbol{w} /\|\boldsymbol{v}\|\|\boldsymbol{w}\|=-7 / \sqrt{14} \sqrt{14}=-1 / 2$ and $\theta=120^{\circ}$. This always happens when $x+y+z=0$:

$$
\boldsymbol{v} \cdot \boldsymbol{w}=x z+x y+y z=\frac{1}{2}(x+y+z)^{2}-\frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)
$$

This is the same as $\boldsymbol{v} \cdot \boldsymbol{w}=0-\frac{1}{2}\|\boldsymbol{v}\|\|\boldsymbol{w}\|$. Then $\cos \theta=\frac{1}{2}$.

32 Wikipedia gives this proof of geometric mean $G=\sqrt[3]{x y z} \leq$ arithmetic mean $A=(x+y+z) / 3$. First there is equality in case $x=y=z$. Otherwise A is somewhere between the three positive numbers, say for example $z<A<y$.

Use the known inequality $g \leq a$ for the two positive numbers x and $y+z-A$. Their mean $a=\frac{1}{2}(x+y+z-A)$ is $\frac{1}{2}(3 A-A)=$ same as A ! So $a \geq g$ says that $A^{3} \geq g^{2} A=x(y+z-A) A$. But $(y+z-A) A=(y-A)(A-z)+y z>y z$. Substitute to find $A^{3}>x y z=G^{3}$ as we wanted to prove. Not easy!

There are many proofs of $G=\left(x_{1} x_{2} \cdots x_{n}\right)^{1 / n} \leq A=\left(x_{1}+x_{2}+\cdots+x_{n}\right) / n$. In calculus you are maximizing G on the plane $x_{1}+x_{2}+\cdots+x_{n}=n$. The maximum occurs when all x 's are equal.

33 The columns of the 4 by 4 "Hadamard matrix" (times $\frac{1}{2}$) are perpendicular unit vectors:

$$
\frac{1}{2} H=\frac{1}{2}\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

34 The commands $V=\boldsymbol{\operatorname { r a n d n }}(3,30) ; D=\mathbf{s q r t}\left(\operatorname{diag}\left(V^{\prime} * V\right)\right) ; U=V \backslash D$; will give 30 random unit vectors in the columns of U. Then $\boldsymbol{u}^{\prime} * U$ is a row matrix of 30 dot products whose average absolute value should be close to $2 / \pi$.

Problem Set 1.3, page 29

$13 s_{1}+4 s_{2}+5 s_{3}=(3,7,12)$. The same vector \boldsymbol{b} comes from S times $\boldsymbol{x}=(3,4,5)$:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right]=\left[\begin{array}{l}
(\text { row } 1) \cdot \boldsymbol{x} \\
(\text { row } 2) \cdot \boldsymbol{x} \\
(\text { row } 2) \cdot \boldsymbol{x}
\end{array}\right]=\left[\begin{array}{r}
3 \\
7 \\
12
\end{array}\right]
$$

2 The solutions are $y_{1}=1, y_{2}=0, y_{3}=0($ right side $=$ column 1$)$ and $y_{1}=1, y_{2}=3$, $y_{3}=5$. That second example illustrates that the first n odd numbers add to n^{2}.
$\begin{aligned} & y_{1}=B_{1} \\ & 3 \\ & y_{1}+y_{2} \\ & y_{1}+y_{2}+y_{3}=B_{3}\end{aligned} \quad$ gives $\quad \begin{array}{ll}y_{1}=B_{1} \\ y_{2}=-B_{1}+B_{2} \\ y_{3}= & -B_{2}+B_{3}\end{array}=\left[\begin{array}{rrr}1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]\left[\begin{array}{l}B_{1} \\ B_{2} \\ B_{3}\end{array}\right]$
4 The combination $0 \boldsymbol{w}_{1}+0 \boldsymbol{w}_{2}+0 \boldsymbol{w}_{3}$ always gives the zero vector, but this problem looks for other zero combinations (then the vectors are dependent, they lie in a plane): $\boldsymbol{w}_{2}=\left(\boldsymbol{w}_{1}+\boldsymbol{w}_{3}\right) / 2$ so one combination that gives zero is $\boldsymbol{w}_{1}-2 \boldsymbol{w}_{2}+\boldsymbol{w}_{3}=\mathbf{0}$.

5 The rows of the 3 by 3 matrix in Problem 4 must also be dependent: $\boldsymbol{r}_{2}=\frac{1}{2}\left(\boldsymbol{r}_{1}+\boldsymbol{r}_{3}\right)$. The column and row combinations that produce $\mathbf{0}$ are the same: this is unusual. Two solutions to $y_{1} \boldsymbol{r}_{1}+y_{2} \boldsymbol{r}_{2}+y_{3} \boldsymbol{r}_{3}=\mathbf{0}$ are $\left(Y_{1}, Y_{2}, Y_{3}\right)=(1,-2,1)$ and $(2,-4,2)$.
$\mathbf{6} c=\mathbf{3}\left[\begin{array}{lll}1 & 1 & 0 \\ 3 & 2 & 1 \\ 7 & 4 & \mathbf{3}\end{array}\right]$ has column $3=$ column $1-$ column 2
$c=\mathbf{- 1}\left[\begin{array}{rrr}1 & 0 & \mathbf{- 1} \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$ has column $3=-$ column $1+$ column 2
$c=\mathbf{0}\left[\begin{array}{lll}\mathbf{0} & \mathbf{0} & \mathbf{0} \\ 2 & 1 & 5 \\ 3 & 3 & 6\end{array}\right]$ has column $3=3($ column 1$)-$ column 2

7 All three rows are perpendicular to the solution \boldsymbol{x} (the three equations $\boldsymbol{r}_{1} \cdot \boldsymbol{x}=0$ and $\boldsymbol{r}_{2} \cdot \boldsymbol{x}=0$ and $\boldsymbol{r}_{3} \cdot \boldsymbol{x}=0$ tell us this). Then the whole plane of the rows is perpendicular to \boldsymbol{x} (the plane is also perpendicular to all multiples $c \boldsymbol{x}$).

$$
\begin{array}{rll}
x_{1}-0=b_{1} & x_{1}=b_{1} \\
x_{2}-x_{1}=b_{2} \\
x_{3}-x_{2}=b_{3} & x_{2}=b_{1}+b_{2} \\
x_{4}-x_{3}=b_{1}+b_{2}+b_{3} \\
x_{4}=b_{1}+b_{2}+b_{3}+b_{4}
\end{array}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]=A^{-1} \boldsymbol{b}
$$

9 The cyclic difference matrix C has a line of solutions (in 4 dimensions) to $C \boldsymbol{x}=\mathbf{0}$:

$$
\begin{aligned}
& {\left[\begin{array}{rrrr}
1 & 0 & 0 & -1 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] \text { when } \boldsymbol{x}=\left[\begin{array}{l}
c \\
c \\
c \\
c
\end{array}\right]=\text { any constant vector. }} \\
& \begin{array}{rlrr}
z_{2}-z_{1} & =b_{1} & z_{1}= & -b_{1}-b_{2}-b_{3} \\
10 & z_{3}-z_{2}=b_{2} \\
0-z_{3} & =b_{3} & z_{2}= & -b_{2}-b_{3} \\
z_{3}= & -b_{3}
\end{array}=\left[\begin{array}{rrr}
-1 & -1 & -1 \\
0 & -1 & -1 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\Delta^{-1} \boldsymbol{b}
\end{aligned}
$$

11 The forward differences of the squares are $(t+1)^{2}-t^{2}=t^{2}+2 t+1-t^{2}=2 t+1$. Differences of the nth power are $(t+1)^{n}-t^{n}=t^{n}-t^{n}+n t^{n-1}+\cdots$. The leading term is the derivative $n t^{n-1}$. The binomial theorem gives all the terms of $(t+1)^{n}$.

12 Centered difference matrices of even size seem to be invertible. Look at eqns. 1 and 4:

$$
\left[\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right] \begin{aligned}
& \text { First } \\
& \text { solve } \\
& x_{2}=b_{1} \\
& -x_{3}=b_{4}
\end{aligned}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-b_{2}-b_{4} \\
b_{1} \\
-b_{4} \\
b_{1}+b_{3}
\end{array}\right]
$$

13 Odd size: The five centered difference equations lead to $b_{1}+b_{3}+b_{5}=0$.

$$
\begin{aligned}
x_{2} & =b_{1} \\
x_{3}-x_{1} & =b_{2} \\
x_{4}-x_{2} & =b_{3} \\
x_{5}-x_{3} & =b_{4} \\
-x_{4} & =b_{5}
\end{aligned}
$$

Add equations 1, 3, 5

The left side of the sum is zero
The right side is $b_{1}+b_{3}+b_{5}$
There cannot be a solution unless $b_{1}+b_{3}+b_{5}=0$.

14 An example is $(a, b)=(3,6)$ and $(c, d)=(1,2)$. We are given that the ratios a / c and b / d are equal. Then $a d=b c$. Then (when you divide by $b d$) the ratios a / b and c / d must also be equal!

