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Solutions to Exercises 99

Problem Set 6.1, page 298

1 The eigenvalues are 1 and 0.5 for A, 1 and 0.25 for A2, 1 and 0 for A∞. Exchanging

the rows of A changes the eigenvalues to 1 and −0.5 (the trace is now 0.2 + 0.3).

Singular matrices stay singular during elimination, so λ = 0 does not change.

2 A has λ1 = −1 and λ2 = 5 with eigenvectors x1 = (−2, 1) and x2 = (1, 1). The

matrix A + I has the same eigenvectors, with eigenvalues increased by 1 to 0 and 6.

That zero eigenvalue correctly indicates that A+ I is singular.

3 A has λ1 = 2 and λ2 = −1 (check trace and determinant) with x1 = (1, 1) and

x2 = (2,−1). A−1 has the same eigenvectors, with eigenvalues 1/λ = 1
2

and −1.

4 det(A−λI) = λ2+λ− 6 = (λ+3)(λ− 2). Then A has λ1 = −3 and λ2 = 2 (check

trace = −1 and determinant = −6) with x1 = (3,−2) and x2 = (1, 1). A2 has the

same eigenvectors as A, with eigenvalues λ2
1 = 9 and λ2

2 = 4.

5 A and B have eigenvalues 1 and 3 (their diagonal entries : triangular matrices). A+B

has λ2 + 8λ + 15 = 0 and λ1 = 3, λ2 = 5. Eigenvalues of A + B are not equal to

eigenvalues of A plus eigenvalues of B.

6 A and B have λ1 = 1 and λ2 = 1. AB and BA have λ2 − 4λ + 1 and the quadratic

formula gives λ = 2±
√
3. Eigenvalues of AB are not equal to eigenvalues of A times

eigenvalues of B. Eigenvalues of AB and BA are equal (this is proved at the end of

Section 6.2).

7 The eigenvalues of U (on its diagonal) are the pivots of A. The eigenvalues of L (on its

diagonal) are all 1’s. The eigenvalues of A are not the same as the pivots.

8 (a) Multiply Ax to see λx which reveals λ (b) Solve (A− λI)x = 0 to find x.

9 (a) Multiply by A: A(Ax) = A(λx) = λAx gives A2x = λ2x

(b) Multiply by A−1: x = A−1Ax = A−1λx = λA−1x gives A−1x = 1

λ
x

(c) Add Ix = x: (A+ I)x = (λ + 1)x.



100 Solutions to Exercises

10 det(A− λI) = d2 − 1.4λ+ 0.4 so A has λ1 = 1 and λ2 = 0.4 with x1 = (1, 2) and

x2 = (1,−1). A∞ has λ1 = 1 and λ2 = 0 (same eigenvectors). A100 has λ1 = 1 and

λ2 = (0.4)100 which is near zero. So A100 is very near A∞: same eigenvectors and

close eigenvalues.

11 Columns of A−λ1I are in the nullspace of A−λ2I because M = (A−λ2I)(A−λ1I)

is the zero matrix [this is the Cayley-Hamilton Theorem in Problem 6.2.30].

Notice that M has zero eigenvalues (λ1−λ2)(λ1−λ1) = 0 and (λ2−λ2)(λ2−λ1) = 0.

So those columns solve (A− λ2I)x = 0, they are eigenvectors.

12 The projection matrix P has λ = 1, 0, 1 with eigenvectors (1, 2, 0), (2,−1, 0), (0, 0, 1).

Add the first and last vectors: (1, 2, 1) also has λ = 1. The whole column space of P

contains eigenvectors with λ = 1 ! Note P 2 = P leads to λ2 = λ so λ = 0 or 1.

13 (a) Pu = (uuT)u = u(uTu) = u so λ = 1 (b) Pv = (uuT)v = u(uTv) = 0

(c) x1 = (−1, 1, 0, 0), x2 = (−3, 0, 1, 0), x3 = (−5, 0, 0, 1) all have Px = 0x = 0.

14 det(Q−λI) = λ2− 2λ cos θ+1 = 0 when λ = cos θ± i sin θ = eiθ and e−iθ . Check

that λ1λ2 = 1 and λ1 + λ2 = 2 cos θ. Two eigenvectors of this rotation matrix are

x1 = (1, i) and x2 = (1,−i) (more generally cx1 and dx2 with cd 6= 0).

15 The other two eigenvalues are λ = 1
2
(−1± i

√
3). The three eigenvalues are 1, 1,−1.

16 Set λ = 0 in det(A− λI) = (λ1 − λ) . . . (λn − λ) to find detA = (λ1)(λ2) · · · (λn).

17 λ1 = 1
2
(a + d+

√
(a− d)2 + 4bc) and λ2 = 1

2
(a + d−

√
) add to a + d.

If A has λ1 = 3 and λ2 = 4 then det(A− λI) = (λ− 3)(λ− 4) = λ2 − 7λ+ 12.

18 These 3 matrices have λ = 4 and 5, trace 9, det 20:


4 0

0 5


 ,


 3 2

−1 6


 ,


 2 2

−3 7


.

19 (a) rank = 2 (b) det(BTB) = 0 (d) eigenvalues of (B2 + I)−1 are 1, 12 ,
1
5 .

20 A =


 0 1

−28 11


 has trace 11 and determinant 28, so λ = 4 and 7. Moving to a 3 by

3 companion matrix, for eigenvalues 1, 2, 3 we want det(C − λI) = (1 − λ)(2 − λ)

(3 − λ). Multiply out to get −λ3 + 6λ2 − 11λ + 6. To get those numbers 6,−11, 6

from a companion matrix you just put them into the last row:
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C =




0 1 0

0 0 1

6 −11 6


 Notice the trace 6 = 1 + 2 + 3 and determinant 6 = (1)(2)(3).

21 (A − λI) has the same determinant as (A − λI)T because every square matrix has

detM = detMT. Pick M = A− λI .


1 0

1 0


 and


1 1

0 0


 have different

eigenvectors.

22 The eigenvalues must be λ = 1 (because the matrix is Markov), 0 (for singular), −1

2

(so sum of eigenvalues = trace = 1
2
).

23


0 0

1 0


,


0 1

0 0


,


−1 1

−1 1


.

Always A2 is the zero matrix if λ = 0 and 0,

by the Cayley-Hamilton Theorem in Problem 6.2.30.

24 λ = 0, 0, 6 (notice rank 1 and trace 6). Two eigenvectors of uvT are perpendicular to

v and the third eigenvector is u : x1=(0,−2, 1), x2=(1,−2, 0), x3=(1, 2, 1).

25 When A and B have the same n λ’s and x’s, look at any combination v = c1x1 +

· · · + cnxn. Multiply by A and B : Av = c1λ1x1 + · · · + cnλnxn equals Bv =

c1λ1x1 + · · ·+ cnλnxn for all vectors v. So A = B.

26 The block matrix has λ = 1, 2 from B and λ = 5, 7 from D. All entries of C are

multiplied by zeros in det(A− λI), so C has no effect on the eigenvalues of the block

matrix.

27 A has rank 1 with eigenvalues 0, 0, 0, 4 (the 4 comes from the trace of A). C has rank

2 (ensuring two zero eigenvalues) and (1, 1, 1, 1) is an eigenvector with λ = 2. With

trace 4, the other eigenvalue is also λ = 2, and its eigenvector is (1,−1, 1,−1).

28 Subtract from 0, 0, 0, 4 in Problem 27. B = A − I has λ = −1, −1, −1, 3 and

C = I − A has λ = 1, 1, 1,−3. Both have det = −3.

29 A is triangular : λ(A) = 1, 4, 6; λ(B) = 2,
√
3, −

√
3; C has rank one : λ(C) = 0, 0, 6.
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30


a b

c d




1

1


 =


a+ b

c+ d


 = (a + b)


1

1


; λ2 = d − b to produce the correct trace

(a+ b) + (d− b) = a+ d.

31 Eigenvector (1, 3, 4) for A with λ = 11 and eigenvector (3, 1, 4) for PAPT with

λ = 11. Eigenvectors with λ 6= 0 must be in the column space since Ax is always

in the column space, and x = Ax/λ.

32 (a) u is a basis for the nullspace (we know Au = 0u); v and w give a basis for the

column space (we know Av and Aw are in the column space).

(b) A(v/3 + w/5) = 3v/3 + 5w/5 = v + w. So x = v/3 + w/5 is a particular

solution to Ax = v +w. Add any cu from the nullspace

(c) If Ax = u had a solution, u would be in the column space: wrong dimension 3.

33 Always (uvT)u = u(vTu) so u is an eigenvector of uvT with λ = vTu. (watch

numbers vTu, vectors u, matrices uvT!!) If vTu = 0 then A2 = u(vTu)vT is the

zero matrix and λ2 = 0, 0 and λ = 0, 0 and trace (A) = 0. This zero trace also comes

from adding the diagonal entries of A = uvT:

A =


u1

u2



[
v1 v2

]
=


u1v1 u1v2

u2v1 u2v2


 has trace u1v1 + u2v2 = vTu = 0

34 det(P − λI) = 0 gives the equation λ4 = 1. This reflects the fact that P 4 = I .

The solutions of λ4 = 1 are λ = 1, i,−1,−i. The real eigenvector x1 = (1, 1, 1, 1)

is not changed by the permutation P . Three more eigenvectors are (1, i, i2, i3) and

(1,−1, 1,−1) and (1,−i, (−i)2, (−i)3).

35 The six 3 by 3 permutation matrices include P = I and three single row exchange

matrices P12, P13, P23 and two double exchange matrices like P12P13. Since PTP = I

gives (detP )2 = 1, the determinant of P is 1 or −1. The pivots are always 1 (but there

may be row exchanges). The trace of P can be 3 (for P = I) or 1 (for row exchange)

or 0 (for double exchange). The possible eigenvalues are 1 and −1 and e2πi/3 and

e−2πi/3.
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36 AB − BA = I can happen only for infinite matrices. If AT = A and BT = −B then

xTx = xT (AB − BA)x = xT (ATB + BTA)x ≤ ||Ax|| ||Bx||+ ||Bx|| ||Ax||.

Therefore ||Ax|| ||Bx|| ≥ 1
2 ||x||2 and (||Ax||/||x||) (||Bx||/||x||) ≥ 1

2 .

37 λ1 = e2πi/3 and λ2 = e−2πi/3 give detλ1λ2 = 1 and trace λ1 + λ2 = −1.

A =


cos θ − sin θ

sin θ cos θ


 with θ =

2π

3
has this trace and det. So does every M−1AM !

38 (a) Since the columns of A add to 1, one eigenvalue is λ = 1 and the other is c − 0.6

(to give the correct trace c+ 0.4).

(b) If c = 1.6 then both eigenvalues are 1, and all solutions to (A − I) x = 0 are

multiples of x = (1,−1). In this case A has rank 1.

(c) If c = 0.8, the eigenvectors for λ = 1 are multiples of (1, 3). Since all powers An

also have column sums = 1, An will approach
1

4


1 1

3 3


 = rank-1 matrix A∞ with

eigenvalues 1, 0 and correct eigenvectors. (1, 3) and (1,−1).

Problem Set 6.2, page 314

1 Eigenvectors in X and eigenvalues inΛ. Then A = XΛX−1 is


1 2

0 3


 =


1 1

0 1




1 0

0 3




1 −1

0 1


.

The second matrix has λ = 0 (rank 1) and λ = 4 (trace = 4). Then A = XΛX−1 is
1 1

3 3


 =


 1 1

−1 3




0 0

0 4







3
4 − 1

4

1
4

1
4


.

2
Put the eigenvectors in X

and eigenvalues 2, 5 in Λ.
A = XΛX−1 =


1 1

0 1




2 0

0 5




1 −1

0 1


 =


2 3

0 5


.

3 If A = XΛX−1 then the eigenvalue matrix for A + 2I is Λ + 2I and the eigenvector

matrix is still X . So A+ 2I = S(Λ + 2I)X−1 = XΛX−1 +X(2I)X−1 = A+ 2I .

4 (a) False: We are not given the λ’s (b) True (c) True (d) False: For this we

would need the eigenvectors of X
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5 With X = I, A = XΛX−1 = Λ is a diagonal matrix. If X is triangular, then X−1 is

triangular, so XΛX−1 is also triangular.

6 The columns of S are nonzero multiples of (2,1) and (0,1): either order. The same

eigenvector matrices diagonalize A and A−1.

7 A = XΛX−1 =


1 1

1 −1




λ1

λ2




1 1

1 −1


 /2 =


λ1 + λ2 λ1 − λ2

λ1 − λ2 λ1 + λ2


 /2.

These are the matrices


a b

b a


, their eigenvectors are (1, 1) and (1,−1).

8 A = XΛX−1 =


1 1

1 0


 =

1

λ1 − λ2


λ1 λ2

1 1




λ1 0

0 λ2




 1 −λ2

−1 λ1


.

XΛkX−1 =
1

λ1 − λ2


λ1 λ2

1 1




λ

k
1 0

0 λk
2




 1 −λ2

−1 λ1




1

0


.

The second component is Fk = (λk
1 − λk

2)/(λ1 − λ2).

9 (a) The equations are


 Gk+2

Gk+1


 = A


 Gk+1

Gk


 with A =


 .5 .5

1 0


. This matrix

has λ1 = 1, λ2 = − 1
2

with x1 = (1, 1), x2 = (1,−2)

(b) An = XΛnX−1 =


1 1

1 −2




1

n 0

0 (−.5)n







2
3

1
3

1
3 − 1

3


→ A∞ =




2
3

1
3

2
3

1
3




10 The rule Fk+2 = Fk+1 + Fk produces the pattern: even, odd, odd, even, odd, odd, . . .

11 (a) True (no zero eigenvalues) (b) False (repeated λ = 2 may have only one line of

eigenvectors) (c) False (repeated λ may have a full set of eigenvectors)

12 (a) False: don’t know if λ = 0 or not.

(b) True: an eigenvector is missing, which can only happen for a repeated eigenvalue.

(c) True: We know there is only one line of eigenvectors.

13 A =


 8 3

−3 2


 (or other), A =


 9 4

−4 1


, A =


 10 5

−5 0


;

only eigenvectors

are x = (c,−c).

14 The rank of A − 3I is r = 1. Changing any entry except a12 = 1 makes A

diagonalizable (the new A will have two different eigenvalues)
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15 Ak = XΛkX−1 approaches zero if and only if every |λ| < 1; A1 is a Markov matrix

so λmax = 1 and Ak
1 → A∞

1 , A2 has λ = .6± .3 so Ak
2 → 0.

16 A1 is XΛX−1 with Λ =


1 0

0 .2


 and X =


1 1

1 −1


 ; Λk →


1 0

0 0


.

Then A1k = XΛkX−1 →




1
2

1
2

1
2

1
2


: steady state.

17 A2 is XΛX−1 with Λ =


 .9 0

0 .3


 and X =


3 −3

1 1


; A10

2


3

1


 = (.9)10


3

1


.

A10
2


 3

−1


 = (.3)10


 3

−1


. Then A10

2


6

0


 = (.9)10


3

1


 + (.3)10


 3

−1


 because


6

0


 is the sum of


3

1


+


 3

−1


.

18


 2 −1

−1 2


 = XΛX−1 =

1

2


1 −1

1 1




1 0

0 3




 1 1

−1 1


 and

Ak = XΛkX−1 =
1

2


1 −1

1 1




1 0

0 3k




 1 1

−1 1


.

Multiply those last three matrices to get Ak =
1

2


1 + 3k 1− 3k

1− 3k 1 + 3k


.

19 Bk = XΛkX−1 =


1 1

0 −1




5 0

0 4



k 
1 1

0 −1


 =


5

k 5k − 4k

0 4k


.

20 detA = (detX)(detΛ)(detX−1) = detΛ = λ1 · · ·λn. This proof (det = product

of λ’s) works when A is diagonalizable. The formula is always true.

21 traceXY = (aq + bs) + (cr + dt) is equal to (qa + rc) + (sb + td) = traceY X .

Diagonalizable case: the trace of XΛX−1 = trace of (ΛX−1)X = Λ: sum of the λ’s.
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22 AB − BA = I is impossible since trace AB − trace BA = zero 6= trace I .

AB − BA = C is possible when trace (C) = 0. For example E =


1 0

1 1


 has

EET −ETE =


−1 0

0 1


 = C with trace zero.

23 If A = XΛX−1 then B =


A 0

0 2A


 =


X 0

0 X




Λ 0

0 2Λ




X

−1 0

0 X−1


. So

B has the original λ’s from A and the additional eigenvalues 2λ1, . . . , 2λn from 2A.

24 The A’s form a subspace since cA and A1 + A2 all have the same X . When X = I

theA’s with those eigenvectors give the subspace of diagonal matrices. The dimension

of that matrix space is 4 since the matrices are 4 by 4.

25 If A has columns x1, . . . ,xn then column by column, A2 = A means every Axi = xi.

All vectors in the column space (combinations of those columns xi) are eigenvectors

with λ = 1. Always the nullspace has λ = 0 (A might have dependent columns,

so there could be less than n eigenvectors with λ = 1). Dimensions of those spaces

C (A) and N (A) add to n by the Fundamental Theorem, so A is diagonalizable (n

independent eigenvectors altogether).

26 Two problems: The nullspace and column space can overlap, so x could be in both.

There may not be r independent eigenvectors in the column space.

27 R=X
√
ΛX−1 =


1 1

1 −1




3

1




1 1

1 −1


 /2 =


2 1

1 2


 has R2=A.

√
B needs λ =

√
9 and

√
−1, trace (their sum) is not real so

√
B cannot be real. Note

that


−1 0

0 −1


 has two imaginary eigenvalues

√
−1 = i and −i, real trace 0, real

square root


 0 1

−1 0


.

28 The factorizations of A and B into XΛX−1 are the same. So A = B. (This is

the same as Problem 6.1.25, expressed in matrix form.)
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29 A = XΛ1X
−1 and B = XΛ2X

−1. Diagonal matrices always give Λ1Λ2 = Λ2Λ1.

Then AB = BA from

XΛ1X
−1XΛ2X

−1 = XΛ1Λ2X
−1 = XΛ2Λ1X

−1 = XΛ2X
−1XΛ1X

−1 = BA.

30 (a) A =


a b

0 d


 has λ = a and λ = d: (A−aI)(A−dI) =


0 b

0 d− a




a− d b

0 0




=


0 0

0 0


. (b) A =


1 1

1 0


 has A2 =


2 1

1 1


 and A2 − A − I = 0 is true,

matching λ2 − λ− 1 = 0 as the Cayley-Hamilton Theorem predicts.

31 When A = XΛX−1 is diagonalizable, the matrix A − λjI = X(Λ − λjI)X
−1 will

have 0 in the j, j diagonal entry of Λ− λjI . The product p(A) becomes

p(A) = (A− λ1I) · · · (A− λnI) = X(Λ− λ1I) · · · (Λ− λnI)X
−1.

That product is the zero matrix because the factors produce a zero in each

diagonal position. Then p(A) = zero matrix, which is the Cayley-Hamilton Theorem.

(If A is not diagonalizable, one proof is to take a sequence of diagonalizable matrices

approaching A.)

Comment I have also seen the following Cayley-Hamilton proof but I am not con-

vinced:

Apply the formula ACT = (detA)I from Section 5.3 to A − λI with variable λ. Its

cofactor matrix C will be a polynomial in λ, since cofactors are determinants:

(A− λI)CT = det(A− λI)I = p(λ)I.

“For fixed A, this is an identity between two matrix polynomials.” Set λ = A to find

the zero matrix on the left, so p(A) = zero matrix on the right—which is the Cayley-

Hamilton Theorem.

I am not certain about the key step of substituting a matrix for λ. If other matrices B

are substituted for λ, does the identity remain true? If AB 6= BA, even the order of

multiplication seems unclear . . .
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32 If AB = BA, then B has the same eigenvectors (1, 0) and (0, 1) as A. So B is

also diagonal b = c = 0. The nullspace for the following equation is 2-dimensional:

AB − BA =


1 0

0 2




a b

c d


 −


a b

c d




1 0

0 2


 =


0 −b

c 0


 =


0 0

0 0


.

Those 4 equations 0 = 0,−b = 0, c = 0, 0 = 0 have a 4 by 4 coefficient matrix with

rank 4− 2 = 2.

33 B has λ = i and −i, so B4 has λ4 = 1 and 1 and B1024 = I .

C has λ = (1 ±
√
3i)/2. This λ is exp(±πi/3) so λ3 = −1 and −1. Then C3 = −I

which leads to C1024 = (−I)341C = −C.

34 The eigenvalues of A =


cos θ − sin θ

sin θ cos θ


 are λ = eiθ and e−iθ (trace 2 cos θ and

determinant = 1). Their eigenvectors are (1,−i) and (1, i):

An = XΛnX−1 =


 1 1

−i i




e

inθ

e−inθ




 i −1

i 1


 /2i

=


 (einθ + e−inθ)/2 · · ·
(einθ − e−inθ)/2i · · ·


 =


cosnθ − sinnθ

sinnθ cosnθ


 .

Geometrically, n rotations by θ give one rotation by nθ.

35 Columns of X times rows of ΛX−1 gives a sum of r rank-1 matrices (r = rank of A).

36 Multiply ones(n) ∗ ones(n) = n ∗ ones(n). This leads to C = −1/(n + 1).

AA−1 = (eye(n) + ones(n)) ∗ (eye(n) + C ∗ ones(n))

= eye(n) + (1 + C + Cn) ∗ ones(n) = eye(n).
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Problem Set 6.3, page 332

1 Eigenvalues 4 and 1 with eigenvectors (1, 0) and (1,−1) give solutions u1 = e4t


1

0




and u2 = et


 1

−1


. If u(0) =


 5

−2


 = 3


1

0


+ 2


 1

−1


, then

u(t) = 3e4t


1
0


+ 2et


 1

−1


.

2 z(t) = 2et solves dx/dt = z with z(0) = 2. Then dy/dt = 4y − 6et with y(0) = 5

gives y(t) = 3e4t + 2et as in Problem 1.

3 (a) If every column of A adds to zero, this means that the rows add to the zero row.

So the rows are dependent, and A is singular, and λ = 0 is an eigenvalue.

(b) The eigenvalues of A =


−2 3

2 −3


 are λ1 = 0 with eigenvector x1 = (3, 2) and

λ2 = −5 (to give trace = −5) with x2 = (1,−1). Then the usual 3 steps:

1. Write u(0) =


4

1


 as


3

2


+


 1

−1


 = x1 + x2 = combination of eigenvectors

2. The solutions follow those eigenvectors: e0tx1 and e−5tx2

3. The solution u(t) = x1 + e−5tx2 has steady state x1 = (3, 2) since e−5t → 0.

4 d(v + w)/dt = (w − v) + (v − w) = 0, so the total v + w is constant.

A =


−1 1

1 −1


 has

λ1 = 0

λ2 = −2
with x1 =


1

1


, x2 =


 1

−1


.


 v(0)

w(0)


 =


 30

10


 = 20


 1

1


+10


 1

−1


 leads to

v(1) = 20 + 10e−2

w(1) = 20− 10e−2

v(∞) = 20

w(∞) = 20

5
d

dt


 v

w


 =


 1 −1

−1 1


 has λ = 0 and λ = +2: v(t) = 20 + 10e2t → −∞ as

t → ∞.

6 A =


a 1

1 a


 has real eigenvalues a+1 and a−1. These are both negative if a < −1.

In this case the solutions of u′ = Au approach zero.
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B =


 b −1

1 b


 has complex eigenvalues b+ i and b− i. These have negative real parts

if b < 0. In this case and all solutions of v′ = Bv approach zero.

7 A projection matrix has eigenvalues λ = 1 and λ = 0. Eigenvectors Px = x fill the

subspace that P projects onto: here x = (1, 1). Eigenvectors with Px = 0 fill the

perpendicular subspace: here x = (1,−1). For the solution to u′ = −Pu,

u(0) =


3

1


 =


2

2


+


 1

−1


 u(t) = e−t


2

2


+e0t


 1

−1


 approaches


 1

−1


 .

8


6 −2

2 1


 has λ1 = 5, x1 =


2

1


, λ2 = 2, x2 =


1

2


; rabbits r(t) = 20e5t+10e2t,

w(t) = 10e5t+20e2t. The ratio of rabbits to wolves approaches 20/10; e5t dominates.

9 (a)


4

0


 = 2


1

i


+2


 1

−i


. (b) Then u(t) = 2eit


1

i


+2e−it


 1

−i


 =


4 cos t

4 sin t


.

10
d

dt


y

y′


 =


y

′

y′′


 =


0 1

4 5




y

y′


. This correctly gives y ′ = y ′ and y ′′ = 4y+5y ′.

A =


0 1

4 5


 has det(A− λI) = λ2 − 5λ− 4 = 0. Directly substituting y = eλt into

y′′ = 5y′ + 4y also gives λ2 = 5λ+ 4 and the same two values of λ. Those values are

1

2
(5±

√
41) by the quadratic formula.

11 The series for eAt is eAt = I + t


0 1

0 0


+ zeros =


1 t

0 1


.

Then


 y(t)

y′(t)


 =


1 t

0 1




 y(0)

y′(0)




y(0) + y′(0)t

y′(0)


. This y(t) = y(0) + y ′(0)t

solves the equation—the factor t tells us that A had only one eigenvector : not diago-

nalizable.
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12 A =


 0 1

−9 6


 has trace 6, det 9, λ = 3 and 3 with one independent eigenvector

(1, 3). Substitute y = te3t to show that this gives the needed second solution (y = e3t

is the first solution).

13 (a) y(t) = cos 3t and sin 3t solve y′′ = −9y. It is 3 cos 3t that starts with y(0) = 3 and

y′(0) = 0. (b) A =


 0 1

−9 0


 has det = 9: λ = 3i and −3i with eigenvectors

x =


 1

3i


 and


 1

−3i


. Then u(t) = 3

2
e3it


 1

3i


+3

2
e−3it


 1

−3i


 =


 3 cos 3t

−9 sin 3t


.

14 WhenA is skew-symmetric, the derivative of ||u(t)||2 is zero. Then ‖u(t)‖ = ‖eAtu(0)‖
stays at ‖u(0)‖. So eAt is matrix orthogonal.

15 up = 4 and u(t) = cet+4. For the matrix equation, the particular solution up = A−1b

is


4

2


 and u(t) = c1e

t


1

t


+ c2e

t


0

1


+


4

2


.

16 Substituting u = ectv gives cectv = Aectv − ectb or (A − cI)v = b or v = (A −
cI)−1b = particular solution. If c is an eigenvalue then A− cI is not invertible.

17 (a)


1 0

0 −1


 (b)


1 0

0 1


 (c)


 1 1

−1 1


. These show the unstable cases

(a) λ1 < 0 and λ2 > 0 (b) λ1 > 0 and λ2 > 0 (c) λ = a± ib with a > 0

18 d/dt(eAt) = A+A2t+ 1

2
A3t2 + 1

6
A4t3 + · · · = A(I +At+ 1

2
A2t2 + 1

6
A3t3 + · · · ).

This is exactly AeAt, the derivative we expect.

19 eBt = I + Bt (short series with B2 = 0) =


1 −4t

0 1


. Derivative =


0 −4

0 0


 =

B.

20 The solution at time t+ T is eA(t+T )u(0). Thus eAt times eAT equals eA(t+T ).

21


1 4

0 0


 =


1 4

0 −1




1 0

0 0


 diagonalizes A = XΛX−1.

Then eAt = XeΛtX−1 =


1 4

0 −1


;


1 4

0 −1




e

t 0

0 1




1 4

0 −1


 =


e

t 4et − 4

0 1


.



112 Solutions to Exercises

22 A2 = A gives eAt = I+At+ 1
2
At2+ 1

6
At3+ · · · = I+(et−1)A =


e

t 4et − 4

0 1


.

23 eA =


e 4(e− 1)

0 1


 from 21 and eB =


1 −4

0 1


 from 19. By direct multiplication

eAeB 6= eBeA 6= eA+B =


e 0

0 1


.

24 A =


1 1

0 3


 =


1 1

0 2




1 0

0 3




1 − 1

2

0 1
2


. Then eAt =


e

t 1
2
(e3t − et)

0 e3t


.

At t = 0, eAt = I and ΛeAt = A.

25 The matrix has A2 =


1 3

0 0



2

=


1 3

0 0


 = A. Then all An = A. So eAt =

I + (t+ t2/2! + · · · )A = I + (et − 1)A =


e

t 3(et − 1)

0 0


 as in Problem 22.

26 (a) The inverse of eAt is e−At (b) If Ax = λx then eAtx = eλtx and eλt 6= 0.

To see eAtx, write (I +At + 1
2A

2t2 + · · · )x = (1 + λt+ 1
2λ

2t2 + · · · )x = eλtx.

27 (x, y) = (e4t, e−4t) is a growing solution. The correct matrix for the exchanged

u =


y

x


 is


 2 −2

−4 0


. It does have the same eigenvalues as the original matrix.

28 Invert


 1 0

∆t 1


 to produceUn+1 =


 1 0

−∆t 1




1 ∆t

0 1


Un =


 1 ∆t

−∆t 1− (∆t)2


Un.

At ∆t = 1,


 1 1

−1 0


 has λ = eiπ/3 and e−iπ/3. Both eigenvalues have λ6 = 1 so

A6 = I . Therefore U6 = A6U0 comes exactly back to U0.

29
First A has λ = ±i and A4 = I .

Second A has λ = −1,−1 and
An = (−1)n


1− 2n −2n

2n 2n+ 1


 Linear growth.

30 With a = ∆t/2 the trapezoidal step is Un+1 =
1

1 + a2


1− a2 2a

−2a 1− a2


Un.

That matrix has orthonormal columns ⇒ orthogonal matrix ⇒ ‖Un+1‖ = ‖Un‖
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31 (a) If Ax = λx then the infinite cosine series gives (cosA)x = (cosλ)x

(b) λ(A) = 2π and 0 so cosλ = 1 and 1 which means that cosA = I

(c) u(t) = 3(cos 2πt)(1, 1)+1(cos 0t)(1,−1) [u ′ = Au has exp, u ′′ = Au has cos ]

32 For proof 2, square the start of the series to see (I + A+ 1
2A

2 + 1
6A

3)2 = I + 2A+

1
2(2A)

2 + 1
6 (2A)

3 + · · · . The diagonalizing proof is easiest when it works (needing

diagonalizable A).

Problem Set 6.4, page 345

Note A way to complete the proof at the end of page 334, (perturbing the matrix to pro-

duce distinct eigenvalues) is now on the course website: “Proofs of the Spectral Theorem.”

math.mit.edu/linearalgebra.

1 The first is ASAT: symmetric but eigenvalues are different from 1 and −1 for S.

The second is ASA−1: same eigenvalues as S but not symmetric.

The third is ASAT = ASA−1: symmetric with the same eigenvalues as S.

This needed B = AT = A−1 to be an orthogonal matrix.

2 (a) ASB stays symmetric like S when B = AT

(b) ASB is similar to S when B = A−1

To have both (a) and (b) we need B = AT = A−1 to be an orthogonal matrix

3 A =




1 3 6

3 3 3

6 3 5


+




0 −1 −2

1 0 −3

2 3 0




= 1
2
(A+AT) + 1

2
(A− AT)

= symmetric + skew-symmetric.

4 (ATCA)T = ATCT(AT)T = ATCA. When A is 6 by 3, C will be 6 by 6 and the

triple product ATCA is 3 by 3.

5 λ = 0, 4,−2; unit vectors ±(0, 1,−1)/
√
2 and ±(2, 1, 1)/

√
6 and ±(1,−1,−1)/

√
3.
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6 λ = 10 and −5 in Λ =


10 0

0 −5


, x =


1

2


 and


 2

−1


 have to be normalized to

unit vectors in Q =
1√
5


1 2

2 −1


.

7 Q =
1

3




2 1 2

2 −2 −1

−1 −2 2


.

The columns of Q are unit eigenvectors of S

Each unit eigenvector could be multiplied by −1

8 S =


 9 12

12 16


 has λ = 0 and 25 so the columns of Q are the two eigenvectors:

Q =


 .8 .6

−.6 .8


 or we can exchange columns or reverse the signs of any column.

9 (a)


1 2

2 1


 has λ = −1 and 3 (b) The pivots 1, 1− b2 have the same signs as the λ’s

(c) The trace is λ1 + λ2 = 2, so S can’t have two negative eigenvalues.

10 If A3 = 0 then all λ3 = 0 so all λ = 0 as in A =


0 1

0 0


. If A is symmetric then

A3 = QΛ3QT = 0 requires Λ = 0. The only symmetric A is Q 0QT = zero matrix.

11 If λ is complex then λ is also an eigenvalue (Ax = λx). Always λ + λ is real. The

trace is real so the third eigenvalue of a 3 by 3 real matrix must be real.

12 If x is not real then λ=xTAx/xTx is not always real. Can’t assume real eigenvectors!

13


3 1

1 3


 = 2




1
2 − 1

2

− 1
2

1
2


+4




1
2

1
2

1
2

1
2


;


 9 12

12 16


 = 0


 .64 −.48

−.48 .36


+25


 .36 .48

.48 .64




14

[
x1 x2

]
is an Q matrix so P1 + P2 = x1x

T
1 + x2x

T
2 =

[
x1 x2

]

xT
1

xT
2


 = I ;

also P1P2 = x1(x
T
1 x2)x

T
2 = zero matrix.

Second proof: P1P2 = P1(I − P1) = P1 − P1 = 0 since P 2
1 = P1.
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15 A =


 0 b

−b 0


 has λ = ib and −ib. The block matrices


A 0

0 A


 and


 0 A

A 0


 are

also skew-symmetric with λ = ib (twice) and λ = −ib (twice).

16 M is skew-symmetric and orthogonal; λ’s must be i, i, −i, −i to have trace zero.

17 A =


 i 1

1 −i


 has λ = 0, 0 and only one independent eigenvector x = (i, 1). The

good property for complex matrices is not AT = A (symmetric) but A
T

= A (Her-

mitian with real eigenvalues and orthogonal eigenvectors: see Problem 22 and Sec-

tion 9.2).

18 (a) If Az = λy and ATy = λz then B[y; −z ] = [−Az; ATy ] = −λ[y; −z ].

So −λ is also an eigenvalue of B. (b) ATAz = AT(λy) = λ2z. (c) λ = −1, −1,

1, 1; x1 = (1, 0,−1, 0), x2 = (0, 1, 0,−1), x3 = (1, 0, 1, 0), x4 = (0, 1, 0, 1).

19 The eigenvalues of S =




0 0 1

0 0 1

1 1 0


 are 0,

√
2,−

√
2 by Problem 16 with

x1 =




1

−1

0


 ,x2 =




1

1
√
2


 ,x3 =




1

1

−
√
2


 .

20 1. y is in the nullspace of S and x is in the column space (that is also row space because

S = ST). The nullspace and row space are perpendicular so yTx = 0.

2. If Sx = λx and Sy = βy then shift S by βI to have a zero eigenvalue that matches

Step 1.(S − βI)x = (λ− β)x and (S − βI)y = 0 and again x is perpendicular to y.

21 S has X =




1 1 0

1 −1 0

0 0 1


; B has X =




1 0 1

0 1 0

0 0 2d


.

Perpendicular for A

Not perpendicular for S

since BT 6= B
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22 S =


 1 3 + 4i

3− 4i 1


 is a Hermitian matrix (S

T
= S). Its eigenvalues 6 and −4 are

real. Adjust equations (1)–(2) in the text to prove that λ is always real when S
T
= S:

Sx = λx leads to Sx = λx. Transpose to xTS = xTλ using S
T
= S.

Then xTSx = xTλx and also xTSx = xTλx. So λ = λ is real.

23 (a) False. A =


1 2

0 1


 (b) True from AT = QΛQT = A

(c) True from S−1 = QΛ−1QT
(d) False!

24 A and AT have the same λ’s but the order of the x’s can change. A =


 0 1

−1 0


 has

λ1 = i and λ2 = −i with x1 = (1, i) first for A but x1 = (1,−i) is first for AT.

25 A is invertible, orthogonal, permutation, diagonalizable, Markov; B is projection, diag-

onalizable, Markov. A allows QR,XΛX−1, QΛQT; B allows XΛX−1 and QΛQT.

26 Symmetry gives QΛQT if b = 1; repeated λ and no X if b = −1; singular if b = 0.

27 Orthogonal and symmetric requires |λ| = 1 and λ real, so λ = ±1. Then S = ±I or

S = QΛQT =


cos θ − sin θ

sin θ cos θ




1 0

0 −1




 cos θ sin θ

− sin θ cos θ


=


cos 2θ sin 2θ

sin 2θ − cos 2θ


.

28 Eigenvectors (1, 0) and (1,1) give a 45◦ angle even with AT very close to A.

29 The roots of λ2 + bλ + c = 0 are
1

2
(−b ±

√
b2 − 4ac). Then λ1 − λ2 is

√
b2 − 4c.

For det(A+ tB − λI) we have b = −3− 8t and c = 2 + 16t − t2. The minimum of

b2 − 4c is 1/17 at t = 2/17. Then λ2 − λ1 = 1/
√
17 : close but not equal !

30 S =


 4 2 + i

2− i 0


 = S

T
has real eigenvalues λ = 5 and −1 with trace = 4 and

det = −5. The solution to 20 proves that λ is real when S
T
= S is Hermitian.

31 (a) A = QΛQT times A T = QΛTQT equals A T times A because Q = Q
T

and

ΛΛ T = ΛTΛ (diagonal!) (b) Step 2: The 1, 1 entries of T T T and TT T are |a|2

and |a|2 + |b|2. Equally makes b = 0 and T = Λ.
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32 a11 is
[
q11 . . . q1n

] [
λ1q11 . . . λnq1n

]T
≤ λmax

(
|q11|2 + · · ·+ |q1n|2

)
= λmax.

33 (a) xT(Ax) = (Ax)Tx = xTATx = −xTAx. (b) zTAz is pure imaginary, its

real part is xTAx + yTAy = 0 + 0 (c) detA = λ1 . . . λn ≥ 0 : pairs of λ’s

= ib,−ib.

34 Since S is diagonalizable with eigenvalue matrix Λ = 2I , the matrix S itself has to be

XΛX−1 = X(2I)X−1 = 2I . (The unsymmetric matrix [2 1 ; 0 2] also has λ = 2, 2.)

35 (a) ST = S and STS = I lead to S2 = I .

(b) The only possible eigenvalues of S are 1 and −1.

(c) Λ =


 I 0

0 −I


 so S=

[
Q1 Q2

]
Λ


QT

1

QT
2


= Q1Q

T
1 −Q2Q

T
2 with QT

1Q2 = 0.

36 (ATSA)T = ATSTATT = ATSA. This matrix ATSA may have different eigen-

values from S, but the “inertia theorem” says that the two sets of eigenvalues have the

same signs. The inertia = number of (positive, zero, negative) eigenvalues is the same

for S and ATSA.

37 Substitute λ = a to find det(S− aI) = a2 − a2 − ca+ ac− b2 = −b2 (negative). The

parabola crosses at the eigenvalues λ because they have det(S − λI) = 0.

Problem Set 6.5, page 358

1 Suppose a > 0 and ac > b2 so that also c > b2/a > 0.

(i) The eigenvalues have the same sign because λ1λ2 = det = ac− b2 > 0.

(ii) That sign is positive because λ1 + λ2 > 0 (it equals the trace a+ c > 0).

2 Only S4 =


 1 10

10 101


 has two positive eigenvalues since 101 > 102.

xTS1x = 5x2
1 + 12x1x2 + 7x2

2 is negative for example when x1 = 4 and x2 = −3:

A1 is not positive definite as its determinant confirms; S2 has trace c0; S3 has det = 0.
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3
Positive definite

for −3 < b < 3


1 0

b 1




1 b

0 9− b2


=


1 0

b 1




1 0

0 9− b2




1 b

0 1


=LDLT

Positive definite

for c > 8


1 0

2 1




2 4

0 c− 8


 =


1 0

2 1




2 0

0 c− 8




1 2

0 1


=LDLT.

Positive definite

for c > b
L =


 1 1

−b/c 0


 D =


 c 0

0 c− b/c


 S = LDLT.

4 f(x, y) = x2 + 4xy + 9y2 = (x+ 2y)2 + 5y2; x2 + 6xy + 9y2 = (x + 3y)2.

5 x2+4xy+3y2 = (x+2y)2−y2 = difference of squares is negative at x = 2, y = −1,

where the first square is zero.

6 A =


0 1

1 0


 produces f(x, y) =

[
x y

]

0 1

1 0




x

y


 = 2xy. A has λ = 1 and

−1. Then A is an indefinite matrix and f(x, y) = 2xy has a saddle point.

7 ATA =


1 2

2 13


 and ATA =


6 5

5 6


 are positive definite; ATA =




2 3 3

3 5 4

3 4 5


 is

singular (and positive semidefinite). The first two A’s have independent columns. The

2 by 3 A cannot have full column rank 3, with only 2 rows; ATA is singular.

8 S =


3 6

6 16


 =


1 0

2 1




3 0

0 4




1 2

0 1


.

Pivots 3, 4 outside squares, ℓij inside.

xTSx = 3(x+ 2y)2 + 4y2

9 S =




4 −4 8

−4 4 −8

8 −8 16




has only one pivot = 4, rank S = 1,

eigenvalues are 24, 0, 0, detS = 0.

10 S =




2 −1 0

−1 2 −1

0 −1 2




has pivots

2, 3
2
, 4
3

;
T =




2 −1 −1

−1 2 −1

−1 −1 2


 is singular; T




1

1

1


 =




0

0

0


.

11 Corner determinants |S1| = 2, |S2| = 6, |S3| = 30. The pivots are 2/1, 6/2, 30/6.

12 S is positive definite for c > 1; determinants c, c2 − 1, and (c − 1)2(c + 2) > 0.

T is never positive definite (determinants d− 4 and −4d+ 12 are never both positive).
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13 S =


1 5

5 10


 is an example with a+ c > 2b but ac < b2, so not positive definite.

14 The eigenvalues of S−1 are positive because they are 1/λ(S). Also the entries of S−1

pass the determinant tests. And xTS−1x = (S−1x)TS(S−1x) > 0 for all x 6= 0.

15 Since xTSx > 0 and xTTx > 0 we have xT(S + T )x = xTSx + xTTx > 0 for

all x 6= 0. Then S + T is a positive definite matrix. The second proof uses the test

S = ATA (independent columns in A): If S = ATA and T = BTB pass this test,

then S + T =
[
A B

]T

A

B


 also passes, and must be positive definite.

16 xTSx is zero when (x1, x2, x3) = (0, 1, 0) because of the zero on the diagonal. Actu-

ally xTSx goes negative for x = (1,−10, 0) because the second pivot is negative.

17 If ajj were smaller than all λ’s, S − ajjI would have all eigenvalues > 0 (positive

definite). But S − ajjI has a zero in the (j, j) position; impossible by Problem 16.

18 If Sx = λx then xTSx = λxTx. If S is positive definite this leads to λ = xTSx/xTx >

0 (ratio of positive numbers). So positive energy ⇒ positive eigenvalues.

19 All cross terms are xT
i xj = 0 because symmetric matrices have orthogonal eigenvec-

tors. So positive eigenvalues ⇒ positive energy.

20 (a) The determinant is positive; all λ > 0 (b) All projection matrices except I are

singular (c) The diagonal entries of D are its eigenvalues (d) S = −I has det =

+1 when n is even.

21 S is positive definite when s > 8; T is positive definite when t > 5 by determinants.

22 A =











1 −1

1 1











√
2











√
9

√
1





















1 1

−1 1











√
2

=


2 1

1 2


; A = Q


4 0

0 2


QT =


3 1

1 3


.

23 x2/a2 + y2/b2 is xTSx when S = diag(1/a2, 1/b2). Then λ1 = 1/a2 and λ2 = 1/b2

so a = 1/
√
λ1 and b = 1/

√
λ2. The ellipse 9x2 +16y2 = 1 has axes with half-lengths

a = 1
3

and b = 1
4

. The points (1
3
, 0) and (0, 1

4
) are at the ends of the axes.

24 The ellipse x2 + xy + y2 = 1 has axes with half-lengths 1/
√
λ =

√
2 and

√
2/3.
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25 S = CTC =


9 3

3 5


;


4 8

8 25


 =


1 0

2 1




4 0

0 9




1 2

0 1


 and C =


2 4

0 3




26 The Cholesky factors C =
(
L
√
D
)T

=




3 0 0

0 1 2

0 0 2


 and C =




1 1 1

0 1 1

0 0
√
5


 have

square roots of the pivots from D. Note again CTC = LDLT = S.

27 Writing out xTSx = xTLDLTx gives ax2+2bxy+cy2 = a(x+ b
ay)

2+ ac−b2

a y2. So

the LDLT from elimination is exactly the same as completing the square. The example

2x2+8xy+10y2 = 2(x+2y)2+2y2 with pivots 2, 2 outside the squares and multiplier

2 inside.

28 detS = (1)(10)(1) = 10; λ = 2 and 5; x1 = (cos θ, sin θ), x2 = (− sin θ, cos θ); the

λ’s are positive. So S is positive definite.

29 S1 =


6x

2 2x

2x 2


 is semidefinite; f1 = (1

2
x2 + y)2 = 0 on the curve 1

2
x2 + y = 0;

S2 =


6x 1

1 0


 =


0 1

1 0


 is indefinite at (0, 1) where first derivatives = 0. Then

x = 0, y = 1 is a saddle point of the function f2(x, y).

30 ax2 + 2bxy + cy2 has a saddle point if ac < b2. The matrix is indefinite (λ < 0 and

λ > 0) because the determinant ac− b2 is negative.

31 If c > 9 the graph of z is a bowl, if c < 9 the graph has a saddle point. When c = 9 the

graph of z = (2x+ 3y)2 is a “trough” staying at zero along the line 2x+ 3y = 0.

32 Orthogonal matrices, exponentials eAt, matrices with det = 1 are groups. Examples

of subgroups are orthogonal matrices with det = 1, exponentials eAn for integer n.

Another subgroup: lower triangular elimination matrices E with diagonal 1’s.

33 A product ST of symmetric positive definite matrices comes into many applications.

The “generalized” eigenvalue problem Kx = λMx has ST = M−1K. (Often we use
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eig(K,M) without actually inverting M .) All eigenvalues λ are positive:

STx = λx gives (Tx)TSTx = (Tx)Tλx. Then λ = xTTTSTx/xTTx > 0.

34 The five eigenvalues of K are 2 − 2 cos kπ
6

= 2 −
√
3, 2 − 1, 2, 2 + 1, 2 +

√
3.

The product of those eigenvalues is 6 = detK.

35 Put parentheses in xTATCAx = (Ax)TC(Ax). Since C is assumed positive definite,

this energy can drop to zero only when Ax = 0. SineA is assumed to have independent

columns, Ax = 0 only happens when x = 0. Thus ATCA has positive energy and is

positive definite.

My textbooks Computational Science and Engineering and Introduction to Ap-

plied Mathematics start with many examples of ATCA in a wide range of applications.

I believe this is a unifying concept from linear algebra.

36 (a) The eigenvectors of λ1I − S are λ1 − λ1, λ1 − λ2, . . . , λ1 − λn. Those are ≥ 0;

λ1I − S is semidefinite.

(b) Semidefinite matrices have energy xT (λ1I − S)x2 ≥ 0. Then λ1x
Tx ≥ xTSx.

(c) Part (b) says xTSx/xTx ≤ λ1 for all x. Equality at the eigenvector with Sx =

λ1x.

37 Energy xTSx = a (x1+x2+x3)
2+c (x2−x3)

2 ≥ 0 if a ≥ 0 and c ≥ 0 : semidefinite.

S has rank ≤ 2 and determinant = 0; cannot be positive definite for any a and c.

Problem Set 6.6, page 360

1 B=GCG−1=GF−1AFG−1 so M=FG−1. C similar to A and B⇒A similar to B.

2 A =


1 0

0 3


 is similar to B =


3 0

0 1


 = M−1AM with M =


0 1

1 0


.
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3 B =


1 0

0 0


 =


1 0

1 1



−1 
1 0

1 0




1 0

1 1


 = M−1AM ;

B =


 1 −1

−1 1


 =


1 0

0 −1



−1 
1 1

1 1




1 0

0 −1


;

B =


4 3

2 1


 =


0 1

1 0



−1 
1 2

3 4




0 1

1 0


.

4 A has no repeated λ so it can be diagonalized: S−1AS = Λ makes A similar to Λ.

5


1 1

0 0


,


0 0

1 1


,


1 0

1 0


,


0 1

0 1


 are similar (they all have eigenvalues 1 and 0).


1 0

0 1


 is by itself and also


0 1

1 0


 is by itself with eigenvalues 1 and −1.

6 Eight families of similar matrices: six matrices have λ = 0, 1 (one family); three

matrices have λ = 1, 1 and three have λ = 0, 0 (two families each!); one has λ = 1,−1;

one has λ = 2, 0; two matrices have λ = 1
2
(1±

√
5) (they are in one family).

7 (a) (M−1AM)(M−1x) = M−1(Ax) = M−10 = 0 (b) The nullspaces of A

and of M−1AM have the same dimension. Different vectors and different bases.

8
Same Λ

Same S
But A =


0 1

0 0


 and B =


0 2

0 0


 have the same line of eigenvectors

and the same eigenvalues λ = 0, 0.

9 A2 =


1 2

0 1


, A3 =


1 3

0 1


, every Ak =


1 k

0 1


. A0 =


1 0

0 1


 and A−1 =


1 −1

0 1


.

10 J2 =


c

2 2c

0 c2


 and Jk =


c

k kck−1

0 ck


; J0 = I and J−1 =


c

−1 −c−2

0 c−1


.

11 u(0) =


5

2


 =


 v(0)

w(0)


. The equation

du

dt
=


λ 1

0 λ


u has

dv

dt
= λv + w and

dw

dt
= λw. Then w(t) = 2eλt and v(t) must include 2teλt (this comes from the

repeated λ). To match v(0) = 5, the solution is v(t) = 2teλt + 5eλt.
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12 If M−1JM=K then JM=




m21 m22 m23 m24

0 0 0 0

m41 m42 m43 m44

0 0 0 0




= MK=




0 m12 m13 0

0 m22 m23 0

0 m32 m33 0

0 m42 m43 0




.

That means m21 = m22 = m23 = m24 = 0. M is not invertible, J not similar to K.

13 The five 4 by 4 Jordan forms with λ = 0, 0, 0, 0 are J1 = zero matrix and

J2 =




0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0




J3 =




0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0




J4 =




0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0




J5 =




0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0




Problem 12 showed that J3 and J4 are not similar, even with the same rank. Every

matrix with all λ = 0 is “nilpotent” (its nth power is An = zero matrix). You see

J4 = 0 for these matrices. How many possible Jordan forms for n = 5 and all λ = 0?

14 (1) Choose Mi = reverse diagonal matrix to get M−1
i JiMi = MT

i in each block

(2) M0 has those diagonal blocksMi to get M−1
0 JM0 = JT. (3) AT = (M−1)TJTMT

equals (M−1)TM−1
0 JM0M

T = (MM0M
T)−1A(MM0M

T), and AT is similar to

A.

15 det(M−1AM − λI) = det(M−1AM −M−1λIM). This is det(M−1(A− λI)M).

By the product rule, the determinants of M and M−1 cancel to leave det(A− λI).

16


a b

c d


 is similar to


d c

b a


;


 b a

d c


 is similar to


 c d

a b


. So two pairs of similar

matrices but


1 0

0 1


 is not similar to


0 1

1 0


: different eigenvalues!
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17 (a) False: Diagonalize a nonsymmetric A = SΛS−1. Then Λ is symmetric and similar

(b) True: A singular matrix has λ = 0. (c) False:


 0 1

−1 0


 and


0 −1

1 0


 are simi-

lar

(they have λ = ±1) (d) True: Adding I increases all eigenvalues by 1

18 AB = B−1(BA)B so AB is similar to BA. If ABx = λx then BA(Bx) = λ(Bx).

19 Diagonal blocks 6 by 6, 4 by 4; AB has the same eigenvalues as BA plus 6− 4 zeros.

20 (a) A = M−1BM ⇒ A2 = (M−1BM)(M−1BM) = M−1B2M . So A2 is similar

to B2. (b) A2 equals (−A)2 but A may not be similar to B = −A (it could be!).

(c)


3 1

0 4


is diagonalizableto


3 0

0 4


becauseλ1 6= λ2, sothesematrices are similar.

(d)


3 1

0 3


 has only one eigenvector, so not diagonalizable (e) PAPT is similar

to A.

21 J2 has three 1’s down the second superdiagonal, and two independent eigenvectors for

λ = 0. Its 5 by 5 Jordan form is


J3

J2


with J3 =




0 1 0

0 0 1

0 0 0


 and J2 =


0 1

0 0


.

Note to professors: An interesting question: Which matrices A have (complex) square

roots R2 = A? If A is invertible, no problem. But any Jordan blocks for λ = 0 must

have sizes n1 ≥ n2 ≥ . . . ≥ nk ≥ nk+1 = 0 that come in pairs like 3 and 2 in this

example: n1 = (n2 or n2+1) and n3 = (n4 or n4+1) and so on.
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A list of all 3 by 3 and 4 by 4 Jordan forms could be




a 0 0

0 b 0

0 0 c


,




a 1 0

0 a 0

0 0 b


,




a 1 0

0 a 1

0 0 a




(for any numbers a, b, c)

with 3, 2, 1 eigenvectors; diag(a, b, c, d) and




a 1

a

b

c




,




a 1

a

b 1

b




,




a 1

a 1

a

b




,




a 1

a 1

a 1

a




with 4, 3, 2, 1 eigenvectors.

22 If all roots are λ = 0, this means that det(A − λI) must be just λn. The Cayley-

Hamilton Theorem in Problem 6.2.32 immediately says that An = zero matrix. The

key example is a single n by n Jordan block (with n − 1 ones above the diagonal):

Check directly that Jn = zero matrix.

23 Certainly Q1R1 is similar to R1Q1 = Q−1
1 (Q1R1)Q1. Then A1 = Q1R1 − cs2I is

similar to A2 = R1Q1 − cs2I.

24 A could have eigenvalues λ = 2 and λ = 1
2

(A could be diagonal). Then A−1 has the

same two eigenvalues (and is similar to A).

Problem Set 6.7, page 371

1 A=UΣV T=



u1 u2




σ1

0





v1 v2



T

=











1 3

3 −1











√
10











√
50 0

0 0





















1 2

2 −1











√
5
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2 This A =


1 2

3 6


 is a 2 by 2 matrix of rank 1. Its row space has basis v1, its nullspace

has basis v2, its column space has basis u1, its left nullspace has basis u2:

Row space
1√
5


1

2


 Nullspace

1√
5


 2

−1




Column space
1√
10


1
3


 , N(AT)

1√
10


 3

−1


 .

3 If A has rank 1 then so does ATA. The only nonzero eigenvalue of ATA is its trace,

which is the sum of all a2ij . (Each diagonal entry of ATA is the sum of a2ij down one

column, so the trace is the sum down all columns.) Then σ1 = square root of this sum,

and σ2
1 = this sum of all a2ij .

4 ATA = AAT =


2 1

1 1


 has eigenvalues σ2

1 =
3 +

√
5

2
, σ2

2 =
3−

√
5

2
.

But A is

indefinite

σ1 = (1 +
√
5)/2 = λ1(A), σ2 = (

√
5− 1)/2 = −λ2(A); u1 = v1 but u2 = −v2.

5 A proof that eigshow finds the SVD. When V 1 = (1, 0),V 2 = (0, 1) the demo finds

AV 1 and AV 2 at some angle θ. A 90◦ turn by the mouse to V 2,−V 1 finds AV 2 and

−AV 1 at the angle π − θ. Somewhere between, the constantly orthogonal v1 and v2

must produce Av1 and Av2 at angle π/2. Those orthogonal directions give u1 and u2.

6 AAT =


2 1

1 2


 has σ2

1 = 3 with u1 =


1/

√
2

1/
√
2


 and σ2

2 = 1 with u2 =


 1/

√
2

−1/
√
2


.

ATA =




1 1 0

1 2 1

0 1 1


 has σ2

1 = 3 with v1 =




1/
√
6

2/
√
6

1/
√
6


, σ2

2 = 1 with v2 =




1/
√
2

0

−1/
√
2


;

and v3 =




1/
√
3

−1/
√
3

1/
√
3


. Then


1 1 0

0 1 1


 = [u1 u2 ]



√
3 0 0

0 1 0


 [v1 v2 v3 ]

T
.
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7 The matrix A in Problem 6 had σ1 =
√
3 and σ2 = 1 in Σ. The smallest change to

rank 1 is to make σ2 = 0. In the factorization

A = UΣV T = u1σ1v
T
1 + u2σ2v

T
2

this change σ2 → 0 will leave the closest rank–1 matrix as u1σ1v
T
1 . See Problem 14

for the general case of this problem.

8 The number σmax(A
−1)σmax(A) is the same as σmax(A)/σmin(A). This is certainly ≥

1. It equals 1 if all σ’s are equal, and A = UΣV T is a multiple of an orthogonal matrix.

The ratio σmax/σmin is the important condition number of A studied in Section 9.2.

9 A = UV T since all σj = 1, which means that Σ = I .

10 A rank–1 matrix with Av = 12u would have u in its column space, so A = uwT

for some vector w. I intended (but didn’t say) that w is a multiple of the unit vector

v = 1
2
(1, 1, 1, 1) in the problem. Then A = 12uvT to get Av = 12u when vTv = 1.

11 If A has orthogonal columns w1, . . . ,wn of lengths σ1, . . . , σn, then ATA will be

diagonal with entries σ2
1, . . . , σ

2
n. So the σ’s are definitely the singular values of A

(as expected). The eigenvalues of that diagonal matrix ATA are the columns of I , so

V = I in the SVD. Then the ui are Avi/σi which is the unit vector wi/σi.

The SVD of this A with orthogonal columns is A = UΣV T = (AΣ−1)(Σ)(I).

12 Since AT = A we have σ2
1 = λ2

1 and σ2
2 = λ2

2. But λ2 is negative, so σ1 = 3 and

σ2 = 2. The unit eigenvectors of A are the same u1 = v1 as for ATA = AAT and

u2 = −v2 (notice the sign change because σ2 = −λ2, as in Problem 4).

13 Suppose the SVD of R is R = UΣV T. Then multiply by Q to get A = QR. So the

SVD of this A is (QU)ΣV T. (Orthogonal Q times orthogonal U = orthogonal QU .)

14 The smallest change in A is to set its smallest singular value σ2 to zero. See # 7.
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15 The singular values of A + I are not σj + 1. They come from eigenvalues of

(A+ I)T(A+ I).

16 This simulates the random walk used by Google on billions of sites to solve Ap = p.

It is like the power method of Section 9.3 except that it follows the links in one “walk”

where the vector pk = Akp0 averages over all walks.

17 A = UΣV T = [cosines including u4] diag(sqrt(2 −
√
2, 2, 2 +

√
2)) [sine matrix]

T
.

AV = UΣ says that differences of sines in V are cosines in U times σ’s.

The SVD of the derivative on [0, π] with f(0) = 0 has u = sinnx, σ = n, v = cosnx!




