INTRODUCTION

TO

LINEAR

ALGEBRA

Fifth Edition

MANUAL FOR INSTRUCTORS

Gilbert Strang

Massachusetts Institute of Technology

math.mit.edu/linearalgebra

web.mit.edu/18.06

video lectures: ocw.mit.edu

math.mit.edu/~gs

www.wellesleycambridge.com email: linearalgebrabook@gmail.com

Wellesley - Cambridge Press

Box 812060 Wellesley, Massachusetts 02482

Problem Set 6.1, page 298

- 1 The eigenvalues are 1 and 0.5 for A, 1 and 0.25 for A², 1 and 0 for A[∞]. Exchanging the rows of A changes the eigenvalues to 1 and -0.5 (the trace is now 0.2 + 0.3). Singular matrices stay singular during elimination, so λ = 0 does not change.
- 2 A has λ₁ = -1 and λ₂ = 5 with eigenvectors x₁ = (-2, 1) and x₂ = (1, 1). The matrix A + I has the same eigenvectors, with eigenvalues increased by 1 to 0 and 6. That zero eigenvalue correctly indicates that A + I is singular.
- **3** A has $\lambda_1 = 2$ and $\lambda_2 = -1$ (check trace and determinant) with $x_1 = (1, 1)$ and $x_2 = (2, -1)$. A^{-1} has the same eigenvectors, with eigenvalues $1/\lambda = \frac{1}{2}$ and -1.
- 4 det(A − λI) = λ² + λ − 6 = (λ + 3)(λ − 2). Then A has λ₁ = −3 and λ₂ = 2 (check trace = −1 and determinant = −6) with x₁ = (3, −2) and x₂ = (1, 1). A² has the same eigenvectors as A, with eigenvalues λ₁² = 9 and λ₂² = 4.
- **5** A and B have eigenvalues 1 and 3 (their diagonal entries : triangular matrices). A + Bhas $\lambda^2 + 8\lambda + 15 = 0$ and $\lambda_1 = 3$, $\lambda_2 = 5$. Eigenvalues of A + B are not equal to eigenvalues of A plus eigenvalues of B.
- 6 A and B have λ₁ = 1 and λ₂ = 1. AB and BA have λ² 4λ + 1 and the quadratic formula gives λ = 2±√3. Eigenvalues of AB are not equal to eigenvalues of A times eigenvalues of B. Eigenvalues of AB and BA are equal (this is proved at the end of Section 6.2).
- 7 The eigenvalues of U (on its diagonal) are the *pivots* of A. The eigenvalues of L (on its diagonal) are all 1's. The eigenvalues of A are not the same as the pivots.
- **8** (a) Multiply Ax to see λx which reveals λ (b) Solve $(A \lambda I)x = 0$ to find x.
- **9** (a) Multiply by A: $A(Ax) = A(\lambda x) = \lambda Ax$ gives $A^2x = \lambda^2 x$
 - (b) Multiply by A^{-1} : $\boldsymbol{x} = A^{-1}A\boldsymbol{x} = A^{-1}\lambda\boldsymbol{x} = \lambda A^{-1}\boldsymbol{x}$ gives $A^{-1}\boldsymbol{x} = \frac{1}{\lambda}\boldsymbol{x}$
 - (c) Add $I \boldsymbol{x} = \boldsymbol{x}$: $(A + I)\boldsymbol{x} = (\boldsymbol{\lambda} + 1)\boldsymbol{x}$.

- **10** det $(A \lambda I) = d^2 1.4\lambda + 0.4$ so A has $\lambda_1 = 1$ and $\lambda_2 = 0.4$ with $x_1 = (1, 2)$ and $x_2=(1,-1).$ A^∞ has $\lambda_1=1$ and $\lambda_2=0$ (same eigenvectors). A^{100} has $\lambda_1=1$ and $\lambda_2 = (0.4)^{100}$ which is near zero. So A^{100} is very near A^∞ : same eigenvectors and close eigenvalues.
- **11** Columns of $A \lambda_1 I$ are in the nullspace of $A \lambda_2 I$ because $M = (A \lambda_2 I)(A \lambda_1 I)$ is the zero matrix [this is the Cayley-Hamilton Theorem in Problem 6.2.30]. Notice that M has zero eigenvalues $(\lambda_1 - \lambda_2)(\lambda_1 - \lambda_1) = 0$ and $(\lambda_2 - \lambda_2)(\lambda_2 - \lambda_1) = 0$. So those columns solve $(A - \lambda_2 I) \mathbf{x} = \mathbf{0}$, they are eigenvectors.
- **12** The projection matrix P has $\lambda = 1, 0, 1$ with eigenvectors (1, 2, 0), (2, -1, 0), (0, 0, 1). Add the first and last vectors: (1, 2, 1) also has $\lambda = 1$. The whole column space of P contains eigenvectors with $\lambda = 1$! Note $P^2 = P$ leads to $\lambda^2 = \lambda$ so $\lambda = 0$ or 1.
- **13** (a) $Pu = (uu^{T})u = u(u^{T}u) = u$ so $\lambda = 1$ (b) $Pv = (uu^{T})v = u(u^{T}v) = 0$ (c) $x_1 = (-1, 1, 0, 0), x_2 = (-3, 0, 1, 0), x_3 = (-5, 0, 0, 1)$ all have Px = 0x = 0.
- 14 det $(Q \lambda I) = \lambda^2 2\lambda \cos \theta + 1 = 0$ when $\lambda = \cos \theta \pm i \sin \theta = e^{i\theta}$ and $e^{-i\theta}$. Check that $\lambda_1\lambda_2 = 1$ and $\lambda_1 + \lambda_2 = 2\cos\theta$. Two eigenvectors of this rotation matrix are $\boldsymbol{x}_1 = (1, i)$ and $\boldsymbol{x}_2 = (1, -i)$ (more generally $c\boldsymbol{x}_1$ and $d\boldsymbol{x}_2$ with $cd \neq 0$).
- **15** The other two eigenvalues are $\lambda = \frac{1}{2}(-1 \pm i\sqrt{3})$. The three eigenvalues are 1, 1, -1.
- **16** Set $\lambda = 0$ in det $(A \lambda I) = (\lambda_1 \lambda) \dots (\lambda_n \lambda)$ to find det $A = (\lambda_1)(\lambda_2) \dots (\lambda_n)$.
- **17** $\lambda_1 = \frac{1}{2}(a + d + \sqrt{(a d)^2 + 4bc})$ and $\lambda_2 = \frac{1}{2}(a + d \sqrt{a^2})$ add to a + d. If A has $\lambda_1 = 3$ and $\lambda_2 = 4$ then $\det(A - \lambda I) = (\lambda - 3)(\lambda - 4) = \lambda^2 - 7\lambda + 12$.
- **18** These 3 matrices have $\lambda = 4$ and 5, trace 9, det 20: $\begin{bmatrix} 4 & 0 \\ 0 & 5 \end{bmatrix}$, $\begin{bmatrix} 3 & 2 \\ -1 & 6 \end{bmatrix}$, $\begin{bmatrix} 2 & 2 \\ -3 & 7 \end{bmatrix}$.
- (b) $det(B^{T}B) = 0$ (d) eigenvalues of $(B^{2} + I)^{-1}$ are $1, \frac{1}{2}, \frac{1}{5}$. **19** (a) rank = 2
- **20** $A = \begin{bmatrix} 0 & 1 \\ -28 & 11 \end{bmatrix}$ has trace 11 and determinant 28, so $\lambda = 4$ and 7. Moving to a 3 by 3 companion matrix, for eigenvalues 1, 2, 3 we want $\det(C - \lambda I) = (1 - \lambda)(2 - \lambda)$ $(3 - \lambda)$. Multiply out to get $-\lambda^3 + 6\lambda^2 - 11\lambda + 6$. To get those numbers 6, -11, 6from a companion matrix you just put them into the last row:

 $C = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -11 & 6 \end{bmatrix}$ Notice the trace 6 = 1 + 2 + 3 and determinant 6 = (1)(2)(3).

21 $(A - \lambda I)$ has the same determinant as $(A - \lambda I)^{T}$ because every square matrix has $\det M = \det M^{T}$. Pick $M = A - \lambda I$.

$$\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \text{ have different}$$

- **22** The eigenvalues must be $\lambda = 1$ (because the matrix is Markov), **0** (for singular), $-\frac{1}{2}$ (so sum of eigenvalues = trace = $\frac{1}{2}$).
- **23** $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}$. Always A^2 is the zero matrix if $\lambda = 0$ and 0, by the Cayley-Hamilton Theorem in Problem 6.2.30.
- 24 $\lambda = 0, 0, 6$ (*notice rank* 1 and trace 6). Two eigenvectors of uv^{T} are perpendicular to v and the third eigenvector is $u: x_1 = (0, -2, 1), x_2 = (1, -2, 0), x_3 = (1, 2, 1).$
- **25** When A and B have the same $n \lambda$'s and x's, look at any combination $v = c_1 x_1 + \cdots + c_n x_n$. Multiply by A and B: $Av = c_1 \lambda_1 x_1 + \cdots + c_n \lambda_n x_n$ equals $Bv = c_1 \lambda_1 x_1 + \cdots + c_n \lambda_n x_n$ for all vectors v. So A = B.
- **26** The block matrix has $\lambda = 1$, 2 from *B* and $\lambda = 5$, 7 from *D*. All entries of *C* are multiplied by zeros in det $(A \lambda I)$, so *C* has no effect on the eigenvalues of the block matrix.
- 27 A has rank 1 with eigenvalues 0, 0, 0, 4 (the 4 comes from the trace of A). C has rank
 2 (ensuring two zero eigenvalues) and (1, 1, 1, 1) is an eigenvector with λ = 2. With trace 4, the other eigenvalue is also λ = 2, and its eigenvector is (1, -1, 1, -1).
- **28** Subtract from 0, 0, 0, 4 in Problem 27. B = A I has $\lambda = -1, -1, -1, 3$ and C = I A has $\lambda = 1, 1, 1, -3$. Both have det = -3.
- **29** A is triangular: $\lambda(A) = 1, 4, 6; \lambda(B) = 2, \sqrt{3}, -\sqrt{3}; C$ has rank one : $\lambda(C) = 0, 0, 6$.

30
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} a+b \\ c+d \end{bmatrix} = (a+b) \begin{bmatrix} 1 \\ 1 \end{bmatrix}; \lambda_2 = d-b$$
 to produce the correct trace $(a+b) + (d-b) = a+d.$

- **31** Eigenvector (1,3,4) for A with $\lambda = 11$ and eigenvector (3,1,4) for PAP^{T} with $\lambda = 11$. Eigenvectors with $\lambda \neq 0$ must be in the column space since Ax is always in the column space, and $x = Ax/\lambda$.
- 32 (a) u is a basis for the nullspace (we know Au = 0u); v and w give a basis for the column space (we know Av and Aw are in the column space).
 (b) A(v/3 + w/5) = 3v/3 + 5w/5 = v + w. So x = v/3 + w/5 is a particular solution to Ax = v + w. Add any cu from the nullspace

(c) If Ax = u had a solution, u would be in the column space: wrong dimension 3.

33 Always $(\boldsymbol{u}\boldsymbol{v}^{\mathrm{T}})\boldsymbol{u} = \boldsymbol{u}(\boldsymbol{v}^{\mathrm{T}}\boldsymbol{u})$ so \boldsymbol{u} is an eigenvector of $\boldsymbol{u}\boldsymbol{v}^{\mathrm{T}}$ with $\lambda = \boldsymbol{v}^{\mathrm{T}}\boldsymbol{u}$. (watch numbers $\boldsymbol{v}^{\mathrm{T}}\boldsymbol{u}$, vectors \boldsymbol{u} , matrices $\boldsymbol{u}\boldsymbol{v}^{\mathrm{T}}!!$) If $\boldsymbol{v}^{\mathrm{T}}\boldsymbol{u} = 0$ then $A^{2} = \boldsymbol{u}(\boldsymbol{v}^{\mathrm{T}}\boldsymbol{u})\boldsymbol{v}^{\mathrm{T}}$ is the zero matrix and $\lambda^{2} = 0, 0$ and $\lambda = 0, 0$ and trace (A) = 0. This zero trace also comes from adding the diagonal entries of $A = \boldsymbol{u}\boldsymbol{v}^{\mathrm{T}}$:

$$A = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \begin{bmatrix} v_1 & v_2 \end{bmatrix} = \begin{bmatrix} u_1 v_1 & u_1 v_2 \\ u_2 v_1 & u_2 v_2 \end{bmatrix} \text{ has trace } u_1 v_1 + u_2 v_2 = \boldsymbol{v}^{\mathrm{T}} \boldsymbol{u} = 0$$

- **34** det $(P \lambda I) = 0$ gives the equation $\lambda^4 = 1$. This reflects the fact that $P^4 = I$. The solutions of $\lambda^4 = 1$ are $\lambda = 1, i, -1, -i$. The real eigenvector $\boldsymbol{x}_1 = (1, 1, 1, 1)$ is not changed by the permutation P. Three more eigenvectors are $(1, i, i^2, i^3)$ and (1, -1, 1, -1) and $(1, -i, (-i)^2, (-i)^3)$.
- **35** The six 3 by 3 permutation matrices include P = I and three single row exchange matrices P_{12} , P_{13} , P_{23} and two double exchange matrices like $P_{12}P_{13}$. Since $P^{T}P = I$ gives $(\det P)^{2} = 1$, the determinant of P is 1 or -1. The pivots are always 1 (but there may be row exchanges). The trace of P can be 3 (for P = I) or 1 (for row exchange) or 0 (for double exchange). The possible eigenvalues are 1 and -1 and $e^{2\pi i/3}$ and $e^{-2\pi i/3}$.

102

Solutions to Exercises

36 AB - BA = I can happen only for infinite matrices. If $A^{T} = A$ and $B^{T} = -B$ then

$$\boldsymbol{x}^{\mathrm{T}}\boldsymbol{x} = \boldsymbol{x}^{\mathrm{T}} \left(AB - BA \right) \boldsymbol{x} = \boldsymbol{x}^{\mathrm{T}} \left(A^{\mathrm{T}}B + B^{\mathrm{T}}A \right) \boldsymbol{x} \le ||A\boldsymbol{x}|| \left| |B\boldsymbol{x}|| + ||B\boldsymbol{x}|| \left| |A\boldsymbol{x}|| \right|$$
Therefore, $||A\boldsymbol{x}|| = ||B\boldsymbol{x}|| = 1$, $||A\boldsymbol{x}|| = 1$, $||A\boldsymbol{x}|| = 1$.

Therefore $||Ax|| ||Bx|| \ge \frac{1}{2} ||x||^2$ and $(||Ax||/||x||) (||Bx||/||x||) \ge \frac{1}{2}$.

- **37** $\lambda_1 = e^{2\pi i/3}$ and $\lambda_2 = e^{-2\pi i/3}$ give det $\lambda_1 \lambda_2 = 1$ and trace $\lambda_1 + \lambda_2 = -1$. $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ with $\theta = \frac{2\pi}{3}$ has this trace and det. So does every $M^{-1}AM!$
- **38** (a) Since the columns of A add to 1, one eigenvalue is $\lambda = 1$ and the other is c 0.6 (to give the correct trace c + 0.4).

(b) If c = 1.6 then both eigenvalues are 1, and all solutions to $(A - I) \mathbf{x} = \mathbf{0}$ are multiples of $\mathbf{x} = (1, -1)$. In this case A has rank 1.

(c) If c = 0.8, the eigenvectors for $\lambda = 1$ are multiples of (1, 3). Since all powers A^n also have column sums = 1, A^n will approach $\frac{1}{4} \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix} =$ rank-1 matrix A^{∞} with eigenvalues 1, 0 and correct eigenvectors. (1, 3) and (1, -1).

Problem Set 6.2, page 314

- **1** Eigenvectors in X and eigenvalues in Λ . Then $A = X\Lambda X^{-1}$ is $\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$. The second matrix has $\lambda = 0$ (rank 1) and $\lambda = 4$ (trace = 4). Then $A = X\Lambda X^{-1}$ is $\begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} \frac{3}{4} & -\frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix}$. Put the eigenvectors in X and X = 0 (rank 1) and $\lambda = 4$ (trace = 4). Then $A = X\Lambda X^{-1}$ is $\begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} \frac{3}{4} & -\frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix}$.
- **2** Put the eigenvectors in X and eigenvalues 2, 5 in Λ . $A = X\Lambda X^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix}$.

3 If $A = X\Lambda X^{-1}$ then the eigenvalue matrix for A + 2I is $\Lambda + 2I$ and the eigenvector matrix is still X. So $A + 2I = S(\Lambda + 2I)X^{-1} = X\Lambda X^{-1} + X(2I)X^{-1} = A + 2I$.

4 (a) False: We are not given the λ 's (b) True (c) True (d) False: For this we would need the eigenvectors of X

matrix

- **5** With $X = I, A = X\Lambda X^{-1} = \Lambda$ is a diagonal matrix. If X is triangular, then X^{-1} is triangular, so $X\Lambda X^{-1}$ is also triangular.
- **6** The columns of S are nonzero multiples of (2,1) and (0,1): either order. The same eigenvector matrices diagonalize A and A^{-1} .

$$7 \ A = X\Lambda X^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} / 2 = \begin{bmatrix} \lambda_1 + \lambda_2 & \lambda_1 - \lambda_2 \\ \lambda_1 - \lambda_2 & \lambda_1 + \lambda_2 \end{bmatrix} / 2.$$
These are the matrices $\begin{bmatrix} a & b \\ b & a \end{bmatrix}$, their eigenvectors are (1, 1) and (1, -1).

$$8 \ A = X\Lambda X^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \frac{1}{\lambda_1 - \lambda_2} \begin{bmatrix} \lambda_1 & \lambda_2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} 1 & -\lambda_2 \\ -1 & \lambda_1 \end{bmatrix}.$$

$$X\Lambda^k X^{-1} = \frac{1}{\lambda_1 - \lambda_2} \begin{bmatrix} \lambda_1 & \lambda_2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1^k & 0 \\ 0 & \lambda_2^k \end{bmatrix} \begin{bmatrix} 1 & -\lambda_2 \\ -1 & \lambda_1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$
The second component is $F_k = (\lambda_1^k - \lambda_2^k) / (\lambda_1 - \lambda_2).$

9 (a) The equations are
$$\begin{bmatrix} G_{k+2} \\ G_{k+1} \end{bmatrix} = A \begin{bmatrix} G_{k+1} \\ G_k \end{bmatrix}$$
 with $A = \begin{bmatrix} .5 & .5 \\ 1 & 0 \end{bmatrix}$. This has $\lambda_1 = 1$, $\lambda_2 = -\frac{1}{2}$ with $\boldsymbol{x}_1 = (1, 1)$, $\boldsymbol{x}_2 = (1, -2)$

(b)
$$A^n = X\Lambda^n X^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 1^n & 0 \\ 0 & (-.5)^n \end{bmatrix} \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} \end{bmatrix} \to A^\infty = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$

- **10** The rule $F_{k+2} = F_{k+1} + F_k$ produces the pattern: even, odd, odd, even, odd, odd, ...
- **11** (a) *True* (no zero eigenvalues) (b) *False* (repeated $\lambda = 2$ may have only one line of eigenvectors) (c) False (repeated λ may have a full set of eigenvectors)
- **12** (a) False: don't know if $\lambda = 0$ or not.

٦

(b) True: an eigenvector is missing, which can only happen for a repeated eigenvalue.

г

(c) True: We know there is only one line of eigenvectors.

13
$$A = \begin{bmatrix} 8 & 3 \\ -3 & 2 \end{bmatrix}$$
 (or other), $A = \begin{bmatrix} 9 & 4 \\ -4 & 1 \end{bmatrix}$, $A = \begin{bmatrix} 10 & 5 \\ -5 & 0 \end{bmatrix}$; only eigenvectors
are $\boldsymbol{x} = (c, -c)$.
14 The rank of $A - 3I$ is $r = 1$. Changing any entry except $a_{12} = 1$ makes A

٦

diagonalizable (the new A will have two different eigenvalues)

Г

15 $A^k = X\Lambda^k X^{-1}$ approaches zero **if and only if every** $|\lambda| < 1$; A_1 is a Markov matrix so $\lambda_{\max} = 1$ and $A_1^k \to A_1^\infty$, A_2 has $\lambda = .6 \pm .3$ so $A_2^k \to 0$.

$$\begin{aligned} \mathbf{16} \ A_{1} \text{ is } X\Lambda X^{-1} \text{ with } \Lambda &= \begin{bmatrix} 1 & 0 \\ 0 & .2 \end{bmatrix} \text{ and } X = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}; \Lambda^{k} \to \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}. \\ \text{Then } A_{1}k &= X\Lambda^{k}X^{-1} \to \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}; \text{ steady state.} \end{aligned}$$

$$\begin{aligned} \mathbf{17} \ A_{2} \text{ is } X\Lambda X^{-1} \text{ with } \Lambda &= \begin{bmatrix} .9 & 0 \\ 0 & .3 \end{bmatrix} \text{ and } X = \begin{bmatrix} 3 & -3 \\ 1 & 1 \end{bmatrix}; A_{2}^{10} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = (.9)^{10} \begin{bmatrix} 3 \\ 1 \end{bmatrix}. \\ A_{2}^{10} \begin{bmatrix} 3 \\ -1 \end{bmatrix} = (.3)^{10} \begin{bmatrix} 3 \\ -1 \end{bmatrix}. \text{ Then } A_{2}^{10} \begin{bmatrix} 6 \\ 0 \end{bmatrix} = (.9)^{10} \begin{bmatrix} 3 \\ 1 \end{bmatrix} + (.3)^{10} \begin{bmatrix} 3 \\ -1 \end{bmatrix} \text{ because} \\ \begin{bmatrix} 6 \\ 0 \end{bmatrix} \text{ is the sum of } \begin{bmatrix} 3 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ -1 \end{bmatrix}. \end{aligned}$$

$$\begin{aligned} \mathbf{18} \ \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = X\Lambda X^{-1} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3^{k} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \text{ and} \\ A^{k} = X\Lambda^{k}X^{-1} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3^{k} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}. \end{aligned}$$

$$\begin{aligned} \text{Multiply those last three matrices to get } A^{k} = \frac{1}{2} \begin{bmatrix} 1 + 3^{k} & 1 - 3^{k} \\ 1 - 3^{k} & 1 + 3^{k} \end{bmatrix}. \end{aligned}$$

- **20** det $A = (\det X)(\det \Lambda)(\det X^{-1}) = \det \Lambda = \lambda_1 \cdots \lambda_n$. This proof $(\det = \text{product} of \lambda$'s) works when A is *diagonalizable*. The formula is always true.
- **21** trace XY = (aq + bs) + (cr + dt) is equal to (qa + rc) + (sb + td) = trace YX. Diagonalizable case: the trace of $X\Lambda X^{-1} = \text{trace of } (\Lambda X^{-1})X = \Lambda$: sum of the λ 's.

- 22 AB BA = I is impossible since trace $AB \text{trace } BA = zero \neq \text{trace } I$. AB - BA = C is possible when trace (C) = 0. For example $E = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ has $EE^{T} - E^{T}E = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = C$ with trace zero. $\begin{bmatrix} A & 0 \end{bmatrix} \begin{bmatrix} X & 0 \end{bmatrix} \begin{bmatrix} \Lambda & 0 \end{bmatrix} \begin{bmatrix} X^{-1} & 0 \end{bmatrix}$
- **23** If $A = X\Lambda X^{-1}$ then $B = \begin{bmatrix} A & 0 \\ 0 & 2A \end{bmatrix} = \begin{bmatrix} X & 0 \\ 0 & X \end{bmatrix} \begin{bmatrix} \Lambda & 0 \\ 0 & 2\Lambda \end{bmatrix} \begin{bmatrix} X^{-1} & 0 \\ 0 & X^{-1} \end{bmatrix}$. So *B* has the original λ 's from *A* and the additional eigenvalues $2\lambda_1, \dots, 2\lambda_n$ from 2A.
- 24 The A's form a subspace since cA and $A_1 + A_2$ all have the same X. When X = I the A's with those eigenvectors give the subspace of **diagonal matrices**. The dimension of that matrix space is 4 since the matrices are 4 by 4.
- 25 If A has columns x₁,..., x_n then column by column, A² = A means every Ax_i = x_i. All vectors in the column space (combinations of those columns x_i) are eigenvectors with λ = 1. Always the nullspace has λ = 0 (A might have dependent columns, so there could be less than n eigenvectors with λ = 1). Dimensions of those spaces C (A) and N (A) add to n by the Fundamental Theorem, so A is diagonalizable (n independent eigenvectors altogether).
- **26** Two problems: The nullspace and column space can overlap, so x could be in both. There may not be r independent eigenvectors in the column space.
- 27 $R = X\sqrt{\Lambda}X^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} / 2 = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ has $R^2 = A$. \sqrt{B} needs $\lambda = \sqrt{9}$ and $\sqrt{-1}$, trace (their sum) is not real so \sqrt{B} cannot be real. Note that $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ has *two* imaginary eigenvalues $\sqrt{-1} = i$ and -i, real trace 0, real square root $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$.
- **28** The factorizations of A and B into $X\Lambda X^{-1}$ are the same. So A = B. (This is the same as Problem 6.1.25, expressed in matrix form.)

Solutions to Exercises

29 $A = X\Lambda_1 X^{-1}$ and $B = X\Lambda_2 X^{-1}$. Diagonal matrices always give $\Lambda_1 \Lambda_2 = \Lambda_2 \Lambda_1$. Then AB = BA from

$$X\Lambda_1 X^{-1} X\Lambda_2 X^{-1} = X\Lambda_1 \Lambda_2 X^{-1} = X\Lambda_2 \Lambda_1 X^{-1} = X\Lambda_2 X^{-1} X\Lambda_1 X^{-1} = BA.$$
30 (a) $A = \begin{bmatrix} a & b \\ 0 & d \end{bmatrix}$ has $\lambda = a$ and $\lambda = d$: $(A - aI)(A - dI) = \begin{bmatrix} 0 & b \\ 0 & d - a \end{bmatrix} \begin{bmatrix} a - d & b \\ 0 & 0 \end{bmatrix}$

$$= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$
 (b) $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ has $A^2 = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ and $A^2 - A - I = 0$ is true,

matching $\lambda^2 - \lambda - 1 = 0$ as the Cayley-Hamilton Theorem predicts.

31 When $A = X\Lambda X^{-1}$ is diagonalizable, the matrix $A - \lambda_j I = X(\Lambda - \lambda_j I)X^{-1}$ will have 0 in the *j*, *j* diagonal entry of $\Lambda - \lambda_j I$. The product p(A) becomes

$$p(A) = (A - \lambda_1 I) \cdots (A - \lambda_n I) = X(\Lambda - \lambda_1 I) \cdots (\Lambda - \lambda_n I) X^{-1}.$$

That product is the zero matrix because the factors produce a zero in each diagonal position. Then p(A) = zero matrix, which is the Cayley-Hamilton Theorem. (If A is not diagonalizable, one proof is to take a sequence of diagonalizable matrices approaching A.)

Comment I have also seen the following Cayley-Hamilton proof but I am not convinced:

Apply the formula $AC^{T} = (\det A)I$ from Section 5.3 to $A - \lambda I$ with variable λ . Its cofactor matrix C will be a polynomial in λ , since cofactors are determinants:

$$(A - \lambda I)C^{\mathrm{T}} = \det(A - \lambda I)I = p(\lambda)I.$$

"For fixed A, this is an identity between two matrix polynomials." Set $\lambda = A$ to find the zero matrix on the left, so p(A) = zero matrix on the right—which is the Cayley-Hamilton Theorem.

I am not certain about the key step of substituting a matrix for λ . If other matrices B are substituted for λ , does the identity remain true? If $AB \neq BA$, even the order of multiplication seems unclear ...

- **32** If AB = BA, then B has the same eigenvectors (1,0) and (0,1) as A. So B is also diagonal b = c = 0. The nullspace for the following equation is 2-dimensional: $AB - BA = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} - \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 0 & -b \\ c & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. Those 4 equations 0 = 0, -b = 0, c = 0, 0 = 0 have a 4 by 4 coefficient matrix with rank 4 - 2 = 2.
- **33** B has $\lambda = i$ and -i, so B^4 has $\lambda^4 = 1$ and 1 and $B^{1024} = I$.

C has $\lambda = (1 \pm \sqrt{3}i)/2$. This λ is $\exp(\pm \pi i/3)$ so $\lambda^3 = -1$ and -1. Then $C^3 = -I$ which leads to $C^{1024} = (-I)^{341}C = -C$.

34 The eigenvalues of $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ are $\lambda = e^{i\theta}$ and $e^{-i\theta}$ (trace $2\cos\theta$ and determinant = 1). Their eigenvectors are (1, -i) and (1, i):

$$A^{n} = X\Lambda^{n}X^{-1} = \begin{bmatrix} 1 & 1 \\ -i & i \end{bmatrix} \begin{bmatrix} e^{in\theta} & \\ & e^{-in\theta} \end{bmatrix} \begin{bmatrix} i & -1 \\ i & 1 \end{bmatrix} / 2i$$
$$= \begin{bmatrix} (e^{in\theta} + e^{-in\theta})/2 & \cdots \\ (e^{in\theta} - e^{-in\theta})/2i & \cdots \end{bmatrix} = \begin{bmatrix} \cos n\theta & -\sin n\theta \\ \sin n\theta & \cos n\theta \end{bmatrix}.$$

Geometrically, n rotations by θ give one rotation by $n\theta$.

- **35** Columns of X times rows of ΛX^{-1} gives a sum of r rank-1 matrices (r = rank of A).
- **36** Multiply ones(n) * ones(n) = n * ones(n). This leads to C = -1/(n + 1).

$$AA^{-1} = (\operatorname{eye}(n) + \operatorname{ones}(n)) * (\operatorname{eye}(n) + C * \operatorname{ones}(n))$$
$$= \operatorname{eye}(n) + (1 + C + Cn) * \operatorname{ones}(n) = \operatorname{eye}(n).$$

Solutions to Exercises

Problem Set 6.3, page 332

- **1** Eigenvalues 4 and 1 with eigenvectors (1, 0) and (1, -1) give solutions $\boldsymbol{u}_1 = e^{4t} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\boldsymbol{u}_2 = e^t \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. If $\boldsymbol{u}(0) = \begin{bmatrix} 5 \\ -2 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, then $\boldsymbol{u}(t) = 3e^{4t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 2e^t \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.
- 2 $z(t) = 2e^t$ solves dx/dt = z with z(0) = 2. Then $dy/dt = 4y 6e^t$ with y(0) = 5 gives $y(t) = 3e^{4t} + 2e^t$ as in Problem 1.
- **3** (a) If every column of A adds to zero, this means that the rows add to the zero row. So the rows are dependent, and A is singular, and $\lambda = 0$ is an eigenvalue.
 - (b) The eigenvalues of $A = \begin{bmatrix} -2 & 3 \\ 2 & -3 \end{bmatrix}$ are $\lambda_1 = 0$ with eigenvector $\boldsymbol{x}_1 = (3, 2)$ and
 - $\lambda_2 = -5$ (to give trace = -5) with $x_2 = (1, -1)$. Then the usual 3 steps:
 - 1. Write $u(0) = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$ as $\begin{bmatrix} 3 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \mathbf{x}_1 + \mathbf{x}_2$ = combination of eigenvectors 2. The solutions follow those eigenvectors: $e^{0t}\mathbf{x}_1$ and $e^{-5t}\mathbf{x}_2$
 - 3. The solution $\boldsymbol{u}(t) = \boldsymbol{x}_1 + e^{-5t} \boldsymbol{x}_2$ has steady state $\boldsymbol{x}_1 = (3,2)$ since $e^{-5t} \to 0$.
- $\begin{array}{lll} \mathbf{4} \ d(v+w)/dt &= \ (w-v) + (v-w) \ = \ 0, \ \text{so the total } v+w \ \text{is constant.} \\ A &= \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \text{has } \begin{array}{l} \lambda_1 = 0 \\ \lambda_2 = -2 \end{array} \text{ with } \mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \mathbf{x}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}. \\ \begin{bmatrix} v(0) \\ w(0) \end{bmatrix} = \begin{bmatrix} 30 \\ 10 \end{bmatrix} = 20 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 10 \begin{bmatrix} 1 \\ -1 \end{bmatrix} \text{ leads to } \begin{array}{l} v(1) = 20 + 10e^{-2} & v(\infty) = 20 \\ w(1) = 20 10e^{-2} & w(\infty) = 20 \end{bmatrix} \\ \mathbf{5} \ \frac{d}{dt} \begin{bmatrix} v \\ w \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \text{ has } \lambda = 0 \text{ and } \lambda = +2: \ v(t) = \mathbf{20} + \mathbf{10}e^{\mathbf{2t}} \to -\infty \text{ as } \\ t \to \infty. \end{aligned}$ $\mathbf{6} \ A = \begin{bmatrix} a & 1 \\ 1 & a \end{bmatrix} \text{ has real eigenvalues } a+1 \text{ and } a-1. \text{ These are both negative if } a < -1. \\ \text{ In this case the solutions of } u' = Au \text{ approach zero.} \end{array}$

 $B = \begin{bmatrix} b & -1 \\ 1 & b \end{bmatrix}$ has complex eigenvalues b + i and b - i. These have negative real parts if b < 0. In this case and all solutions of v' = Bv approach zero.

7 A projection matrix has eigenvalues λ = 1 and λ = 0. Eigenvectors Px = x fill the subspace that P projects onto: here x = (1,1). Eigenvectors with Px = 0 fill the perpendicular subspace: here x = (1,-1). For the solution to u' = -Pu,

$$\boldsymbol{u}(0) = \begin{bmatrix} 3\\1 \end{bmatrix} = \begin{bmatrix} 2\\2 \end{bmatrix} + \begin{bmatrix} 1\\-1 \end{bmatrix} \qquad \boldsymbol{u}(t) = e^{-t} \begin{bmatrix} 2\\2 \end{bmatrix} + e^{0t} \begin{bmatrix} 1\\-1 \end{bmatrix} \text{ approaches } \begin{bmatrix} 1\\-1 \end{bmatrix}.$$

$$\begin{array}{l} \mathbf{8} \begin{bmatrix} 6 & -2 \\ 2 & 1 \end{bmatrix} \text{has } \lambda_1 = 5, \ \mathbf{x}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \ \lambda_2 = 2, \ \mathbf{x}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; \text{ rabbits } r(t) = 20e^{5t} + 10e^{2t}, \\ w(t) = 10e^{5t} + 20e^{2t}. \text{ The ratio of rabbits to wolves approaches } 20/10; e^{5t} \text{ dominates.} \\ \mathbf{9} \ (a) \begin{bmatrix} 4 \\ 0 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ i \end{bmatrix} + 2 \begin{bmatrix} 1 \\ -i \end{bmatrix}. \quad (b) \text{ Then } u(t) = 2e^{it} \begin{bmatrix} 1 \\ i \end{bmatrix} + 2e^{-it} \begin{bmatrix} 1 \\ -i \end{bmatrix} = \begin{bmatrix} 4\cos t \\ 4\sin t \end{bmatrix} \\ \mathbf{10} \ \frac{d}{dt} \begin{bmatrix} y \\ y' \end{bmatrix} = \begin{bmatrix} y' \\ y'' \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} y \\ y' \end{bmatrix}. \text{ This correctly gives } y' = y' \text{ and } y'' = 4y + 5y'. \\ A = \begin{bmatrix} 0 & 1 \\ 4 & 5 \end{bmatrix} \text{ has } \det(A - \lambda I) = \lambda^2 - 5\lambda - 4 = 0. \text{ Directly substituting } y = e^{\lambda t} \text{ into } \\ y'' = 5y' + 4y \text{ also gives } \lambda^2 = 5\lambda + 4 \text{ and the same two values of } \lambda. \text{ Those values are } \\ \frac{1}{2}(5 \pm \sqrt{41}) \text{ by the quadratic formula.} \end{array}$$

11 The series for
$$e^{At}$$
 is $e^{At} = I + t \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \text{zeros} = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}.$
$$\begin{bmatrix} u(t) \\ 1 & t \end{bmatrix} \begin{bmatrix} 1 & t \\ 0 \end{bmatrix} \begin{bmatrix} u(0) \\ 1 \end{bmatrix} \begin{bmatrix} u(0) \\ 1 \end{bmatrix} + u'(0)t \end{bmatrix}$$

Then $\begin{bmatrix} y(t) \\ y'(t) \end{bmatrix} = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y(0) \\ y'(0) \end{bmatrix} \begin{bmatrix} y(0) + y'(0)t \\ y'(0) \end{bmatrix}$. This y(t) = y(0) + y'(0)t solves the equation—the factor t tells us that A had only one eigenvector: not diago-

solves the equation—the factor t tells us that A had only one eigenvector: not diagonalizable.

12 $A = \begin{bmatrix} 0 & 1 \\ -9 & 6 \end{bmatrix}$ has trace 6, det 9, $\lambda = 3$ and 3 with *one* independent eigenvector (1,3). Substitute $y = te^{3t}$ to show that this gives the needed second solution ($y = e^{3t}$ is the first solution).

- **13** (a) $y(t) = \cos 3t$ and $\sin 3t$ solve y'' = -9y. It is $\mathbf{3} \cos 3t$ that starts with y(0) = 3 and y'(0) = 0. (b) $A = \begin{bmatrix} 0 & 1 \\ -9 & 0 \end{bmatrix}$ has det = 9: $\lambda = 3i$ and -3i with eigenvectors $x = \begin{bmatrix} 1 \\ 3i \end{bmatrix}$ and $\begin{bmatrix} 1 \\ -3i \end{bmatrix}$. Then $u(t) = \frac{3}{2}e^{3it} \begin{bmatrix} 1 \\ 3i \end{bmatrix} + \frac{3}{2}e^{-3it} \begin{bmatrix} 1 \\ -3i \end{bmatrix} = \begin{bmatrix} 3\cos 3t \\ -9\sin 3t \end{bmatrix}$.
- 14 When A is skew-symmetric, the derivative of $||u(t)||^2$ is zero. Then $||u(t)|| = ||e^{At}u(0)||$ stays at ||u(0)||. So e^{At} is matrix orthogonal.
- **15** $\boldsymbol{u}_p = 4$ and $\boldsymbol{u}(t) = ce^t + 4$. For the matrix equation, the particular solution $\boldsymbol{u}_p = A^{-1}\boldsymbol{b}$ is $\begin{bmatrix} 4\\2 \end{bmatrix}$ and $\boldsymbol{u}(t) = c_1e^t \begin{bmatrix} 1\\t \end{bmatrix} + c_2e^t \begin{bmatrix} 0\\1 \end{bmatrix} + \begin{bmatrix} 4\\2 \end{bmatrix}$.

16 Substituting $u = e^{ct}v$ gives $ce^{ct}v = Ae^{ct}v - e^{ct}b$ or (A - cI)v = b or $v = (A - cI)^{-1}b$ = particular solution. If c is an eigenvalue then A - cI is not invertible.

17 (a) $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$. These show the unstable cases (a) $\lambda_1 < 0$ and $\lambda_2 > 0$ (b) $\lambda_1 > 0$ and $\lambda_2 > 0$ (c) $\lambda = a \pm ib$ with a > 0

18 $d/dt(e^{At}) = A + A^2t + \frac{1}{2}A^3t^2 + \frac{1}{6}A^4t^3 + \dots = A(I + At + \frac{1}{2}A^2t^2 + \frac{1}{6}A^3t^3 + \dots).$ This is exactly Ae^{At} , the derivative we expect.

19
$$e^{Bt} = I + Bt$$
 (short series with $B^2 = 0$) = $\begin{bmatrix} \mathbf{1} & -4t \\ \mathbf{0} & \mathbf{1} \end{bmatrix}$. Derivative = $\begin{bmatrix} 0 & -4 \\ 0 & 0 \end{bmatrix} = B$.

20 The solution at time t + T is $e^{A(t+T)}u(0)$. Thus e^{At} times e^{AT} equals $e^{A(t+T)}$.

$$\mathbf{21} \begin{bmatrix} 1 & 4 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \mathbf{1} & 0 \\ 0 & \mathbf{0} \end{bmatrix} \text{ diagonalizes } A = X\Lambda X^{-1}.$$

$$\text{Then } e^{At} = Xe^{\Lambda t}X^{-1} = \begin{bmatrix} 1 & 4 \\ 0 & -1 \end{bmatrix}; \begin{bmatrix} 1 & 4 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \mathbf{e}^t & 0 \\ 0 & \mathbf{1} \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} e^t & 4e^t - 4 \\ 0 & 1 \end{bmatrix}$$

$$\begin{aligned} \mathbf{22} \ A^2 &= A \text{ gives } e^{At} = I + At + \frac{1}{2}At^2 + \frac{1}{6}At^3 + \dots = I + (e^t - 1)A = \begin{bmatrix} e^t & 4e^t - 4 \\ 0 & 1 \end{bmatrix}. \\ \mathbf{23} \ e^A &= \begin{bmatrix} e & 4(e-1) \\ 0 & 1 \end{bmatrix} \text{ from } \mathbf{21} \text{ and } e^B = \begin{bmatrix} 1 & -4 \\ 0 & 1 \end{bmatrix} \text{ from } \mathbf{19}. \text{ By direct multiplication} \\ e^A e^B &\neq e^B e^A \neq e^{A+B} = \begin{bmatrix} e & 0 \\ 0 & 1 \end{bmatrix}. \\ \mathbf{24} \ A &= \begin{bmatrix} 1 & 1 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{2} \end{bmatrix}. \text{ Then } e^{At} = \begin{bmatrix} e^t & \frac{1}{2}(e^{3t} - e^t) \\ 0 & e^{3t} \end{bmatrix}. \\ \text{At } t = 0, e^{At} = I \text{ and } Ae^{At} = A. \end{aligned} \\ \mathbf{25} \text{ The matrix has } A^2 &= \begin{bmatrix} 1 & 3 \\ 0 & 0 \end{bmatrix}^2 = \begin{bmatrix} 1 & 3 \\ 0 & 0 \end{bmatrix} = A. \text{ Then all } A^n = A. \text{ So } e^{At} = I + (t + t^2/2! + \cdots)A = I + (e^t - 1)A = \begin{bmatrix} e^t & 3(e^t - 1) \\ 0 & 0 \end{bmatrix} \text{ as in Problem } 22. \end{aligned} \\ \mathbf{26} \text{ (a) The inverse of } e^{At} \text{ is } e^{-At} \qquad \text{ (b) If } Ax = \lambda x \text{ then } e^{At} x = e^{\lambda t} x \text{ and } e^{\lambda t} \neq 0. \\ \text{To see } e^{At} x, \text{ write } (I + At + \frac{1}{2}A^2t^2 + \cdots)x = (1 + \lambda t + \frac{1}{2}\lambda^2t^2 + \cdots)x = e^{\lambda t}x. \end{aligned} \\ \mathbf{27} \ (x,y) = (e^{4t}, e^{-4t}) \text{ is a growing solution. The correct matrix for the exchanged} u = \begin{bmatrix} y \\ x \\ \end{bmatrix} \text{ is } \begin{bmatrix} 2 & -2 \\ -4 & 0 \end{bmatrix}. \text{ It } does \text{ have the same eigenvalues as the original matrix. } \end{aligned} \\ \mathbf{28} \text{ Invert } \begin{bmatrix} 1 & 0 \\ 0 \\ \Delta t & 1 \end{bmatrix} \text{ to produce } U_{n+1} = \begin{bmatrix} 1 & 0 \\ -\Delta t & 1 \end{bmatrix} \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} U_n = \begin{bmatrix} 1 & \Delta t \\ -\Delta t & 1 - (\Delta t)^2 \end{bmatrix} U_n. \\ \text{ At } \Delta t = 1, \begin{bmatrix} 1 & 1 \\ -1 & 0 \\ 1 & -1 \end{bmatrix} \text{ has } \lambda = e^{i\pi/3} \text{ and } e^{-i\pi/3}. \text{ Bot eigenvalues have } \lambda^6 = 1 \text{ so } A^6 = I. \text{ Therefore } U_6 = A^6 U_0 \text{ comes exactly back to } U_0. \end{aligned}$$

29 First A has $\lambda = \pm i$ and $A^4 = I. \\ A^n = (-1)^n \begin{bmatrix} 1 - 2n & -2n \\ 2n & 2n + 1 \end{bmatrix} \text{ Linear growth. } \\ \text{ Second } A \text{ has } \lambda = -1, -1 \text{ and } A^n = (-1)^n \begin{bmatrix} 1 - 2n & -2n \\ 2n & 2n + 1 \end{bmatrix} \text{ Linear growth. } \end{aligned}$

- **31** (a) If $A\mathbf{x} = \lambda \mathbf{x}$ then the infinite cosine series gives $(\cos A)\mathbf{x} = (\cos \lambda)\mathbf{x}$
 - (b) $\lambda(A) = 2\pi$ and 0 so $\cos \lambda = 1$ and 1 which means that $\cos A = I$
 - (c) $u(t) = 3(\cos 2\pi t)(1, 1) + 1(\cos 0t)(1, -1) [u' = Au \text{ has } \exp, u'' = Au \text{ has } \cos]$
- **32** For proof 2, square the start of the series to see $(I + A + \frac{1}{2}A^2 + \frac{1}{6}A^3)^2 = I + 2A + \frac{1}{2}(2A)^2 + \frac{1}{6}(2A)^3 + \cdots$. The diagonalizing proof is easiest when it works (needing diagonalizable A).

Problem Set 6.4, page 345

Note A way to complete the proof at the end of page 334, (perturbing the matrix to produce distinct eigenvalues) is now on the course website: "*Proofs of the Spectral Theorem*." **math.mit.edu/linearalgebra**.

1 The first is ASA^T: symmetric but eigenvalues are different from 1 and -1 for S.
The second is ASA⁻¹: same eigenvalues as S but not symmetric.

The third is $ASA^{T} = ASA^{-1}$: symmetric with the same eigenvalues as S.

This needed $B = A^{T} = A^{-1}$ to be an **orthogonal matrix**.

- **2** (a) ASB stays symmetric like S when $B = A^{T}$
 - (b) ASB is similar to S when $B = A^{-1}$

To have both (a) and (b) we need $B = A^{T} = A^{-1}$ to be an **orthogonal matrix**

3
$$A = \begin{vmatrix} 1 & 3 & 6 \\ 3 & 3 & 3 \\ 6 & 3 & 5 \end{vmatrix} + \begin{vmatrix} 0 & -1 & -2 \\ 1 & 0 & -3 \\ 2 & 3 & 0 \end{vmatrix} = \frac{1}{2}(A + A^{\mathrm{T}}) + \frac{1}{2}(A - A^{\mathrm{T}})$$

= symmetric + skew-symmetric.

- 4 $(A^{\mathrm{T}}CA)^{\mathrm{T}} = A^{\mathrm{T}}C^{\mathrm{T}}(A^{\mathrm{T}})^{\mathrm{T}} = A^{\mathrm{T}}CA$. When A is 6 by 3, C will be 6 by 6 and the triple product $A^{\mathrm{T}}CA$ is 3 by 3.
- **5** $\lambda = 0, 4, -2$; unit vectors $\pm (0, 1, -1)/\sqrt{2}$ and $\pm (2, 1, 1)/\sqrt{6}$ and $\pm (1, -1, -1)/\sqrt{3}$.

6 $\lambda = 10$ and -5 in $\Lambda = \begin{bmatrix} 10 & 0 \\ 0 & -5 \end{bmatrix}$, $\boldsymbol{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ -1 \end{bmatrix}$ have to be normalized to unit vectors in $Q = \frac{1}{\sqrt{5}} \begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix}$. 7 $Q = \frac{1}{3} \begin{vmatrix} 2 & 1 & 2 \\ 2 & -2 & -1 \\ -1 & -2 & 2 \end{vmatrix}$. The columns of Q are unit eigenvectors of SEach unit eigenvector could be multiplied by -1**8** $S = \begin{bmatrix} 9 & 12 \\ 12 & 16 \end{bmatrix}$ has $\lambda = 0$ and 25 so the columns of Q are the two eigenvectors: $Q = \begin{bmatrix} .8 & .6 \\ .6 & 8 \end{bmatrix}$ or we can exchange columns or reverse the signs of any column. **9** (a) $\begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix}$ has $\lambda = -1$ and 3 (b) The pivots $1, 1 - b^2$ have the same signs as the λ 's (c) The trace is $\lambda_1 + \lambda_2 = 2$, so S can't have two negative eigenvalues. **10** If $A^3 = 0$ then all $\lambda^3 = 0$ so all $\lambda = 0$ as in $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. If A is symmetric then $A^3 = Q\Lambda^3 Q^{\mathrm{T}} = 0$ requires $\Lambda = 0$. The only symmetric A is $Q \, 0 \, Q^{\mathrm{T}} =$ zero matrix. 11 If λ is complex then $\overline{\lambda}$ is also an eigenvalue $(A\overline{x} = \overline{\lambda}\overline{x})$. Always $\lambda + \overline{\lambda}$ is real. The trace is real so the third eigenvalue of a 3 by 3 real matrix must be real. 12 If x is not real then $\lambda = x^{T}Ax/x^{T}x$ is not always real. Can't assume real eigenvectors! $\mathbf{13} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} = 2 \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix} + 4 \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}; \begin{bmatrix} 9 & 12 \\ 12 & 16 \end{bmatrix} = 0 \begin{bmatrix} .64 & -.48 \\ -.48 & .36 \end{bmatrix} + 25 \begin{bmatrix} .36 & .48 \\ .48 & .64 \end{bmatrix}$ **14** $\begin{bmatrix} \boldsymbol{x}_1 & \boldsymbol{x}_2 \end{bmatrix}$ is an Q matrix so $P_1 + P_2 = \boldsymbol{x}_1 \boldsymbol{x}_1^{\mathrm{T}} + \boldsymbol{x}_2 \boldsymbol{x}_2^{\mathrm{T}} = \begin{bmatrix} \boldsymbol{x}_1 & \boldsymbol{x}_2 \end{bmatrix} \begin{bmatrix} \boldsymbol{x}_1^{\mathrm{T}} \\ \boldsymbol{x}_1^{\mathrm{T}} \end{bmatrix} = I;$ also $P_1P_2 = \boldsymbol{x}_1(\boldsymbol{x}_1^{\mathrm{T}}\boldsymbol{x}_2)\boldsymbol{x}_2^{\mathrm{T}} = \text{zero matrix}$

Second proof: $P_1P_2 = P_1(I - P_1) = P_1 - P_1 = 0$ since $P_1^2 = P_1$.

114

Solutions to Exercises

15
$$A = \begin{bmatrix} 0 & b \\ -b & 0 \end{bmatrix}$$
 has $\lambda = ib$ and $-ib$. The block matrices $\begin{bmatrix} A & 0 \\ 0 & A \end{bmatrix}$ and $\begin{bmatrix} 0 & A \\ A & 0 \end{bmatrix}$ are also skew-symmetric with $\lambda = ib$ (twice) and $\lambda = -ib$ (twice).

- **16** M is skew-symmetric and **orthogonal**; λ 's must be i, i, -i, -i to have trace zero.
- **17** $A = \begin{bmatrix} i & 1 \\ 1 & -i \end{bmatrix}$ has $\lambda = 0, 0$ and only one independent eigenvector $\boldsymbol{x} = (i, 1)$. The good property for complex matrices is not $A^{\mathrm{T}} = A$ (symmetric) but $\overline{A}^{\mathrm{T}} = A$ (Hermitian with real eigenvalues and orthogonal eigenvectors: see Problem 22 and Section 9.2).
- **18** (a) If $Az = \lambda y$ and $A^{T}y = \lambda z$ then $B[y; -z] = [-Az; A^{T}y] = -\lambda[y; -z]$. So $-\lambda$ is also an eigenvalue of B. (b) $A^{T}Az = A^{T}(\lambda y) = \lambda^{2}z$. (c) $\lambda = -1, -1, 1, 1; x_{1} = (1, 0, -1, 0), x_{2} = (0, 1, 0, -1), x_{3} = (1, 0, 1, 0), x_{4} = (0, 1, 0, 1)$.

19 The eigenvalues of $S = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ are $0, \sqrt{2}, -\sqrt{2}$ by Problem 16 with

$$oldsymbol{x}_1 = egin{bmatrix} 1 \ -1 \ 0 \end{bmatrix}, oldsymbol{x}_2 = egin{bmatrix} 1 \ 1 \ \sqrt{2} \end{bmatrix}, oldsymbol{x}_3 = egin{bmatrix} 1 \ 1 \ -\sqrt{2} \end{bmatrix}$$

20 1. y is in the nullspace of S and x is in the column space (that is also row space because S = S^T). The nullspace and row space are perpendicular so y^Tx = 0.
2. If Sx = λx and Sy = βy then shift S by βI to have a zero eigenvalue that matches Step 1.(S - βI)x = (λ - β)x and (S - βI)y = 0 and again x is perpendicular to y.

21 S has
$$X = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
; B has $X = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2d \end{bmatrix}$. Perpendicular for A
Not perpendicular for S since $B^{\mathrm{T}} \neq B$

22
$$S = \begin{bmatrix} 1 & 3+4i \\ 3-4i & 1 \end{bmatrix}$$
 is a *Hermitian matrix* ($\overline{S}^{T} = S$). Its eigenvalues 6 and -4 are *real*. Adjust equations (1)–(2) in the text to prove that λ is always real when $\overline{S}^{T} = S$:

 $S\boldsymbol{x} = \lambda \boldsymbol{x}$ leads to $\overline{S}\overline{\boldsymbol{x}} = \overline{\lambda}\overline{\boldsymbol{x}}$. Transpose to $\overline{\boldsymbol{x}}^{\mathrm{T}}S = \overline{\boldsymbol{x}}^{\mathrm{T}}\overline{\lambda}$ using $\overline{S}^{\mathrm{T}} = S$. Then $\overline{\boldsymbol{x}}^{\mathrm{T}}S\boldsymbol{x} = \overline{\boldsymbol{x}}^{\mathrm{T}}\lambda\boldsymbol{x}$ and also $\overline{\boldsymbol{x}}^{\mathrm{T}}S\boldsymbol{x} = \overline{\boldsymbol{x}}^{\mathrm{T}}\overline{\lambda}\boldsymbol{x}$. So $\lambda = \overline{\lambda}$ is real.

23 (a) False.
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
 (b) True from $A^{\mathrm{T}} = Q\Lambda Q^{\mathrm{T}} = A$
(c) True from $S^{-1} = Q\Lambda^{-1}Q^{\mathrm{T}}$ (d) False!

24 A and A^{T} have the same λ 's but the *order* of the \boldsymbol{x} 's can change. $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ has $\lambda_1 = i$ and $\lambda_2 = -i$ with $\boldsymbol{x}_1 = (1, i)$ first for A but $\boldsymbol{x}_1 = (1, -i)$ is first for A^{T} .

- **25** *A* is invertible, orthogonal, permutation, diagonalizable, Markov; *B* is projection, diagonalizable, Markov. *A* allows $QR, X\Lambda X^{-1}, Q\Lambda Q^{T}$; *B* allows $X\Lambda X^{-1}$ and $Q\Lambda Q^{T}$.
- **26** Symmetry gives $Q\Lambda Q^{\mathrm{T}}$ if b = 1; repeated λ and no X if b = -1; singular if b = 0.
- 27 Orthogonal and symmetric requires $|\lambda| = 1$ and λ real, so $\lambda = \pm 1$. Then $S = \pm I$ or $S = Q\Lambda Q^{\mathrm{T}} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} = \begin{bmatrix} \cos2\theta & \sin2\theta \\ \sin2\theta & -\cos2\theta \end{bmatrix}$.
- **28** Eigenvectors (1,0) and (1,1) give a 45° angle even with A^{T} very close to A.
- **29** The roots of $\lambda^2 + b\lambda + c = 0$ are $\frac{1}{2}(-b \pm \sqrt{b^2 4ac})$. Then $\lambda_1 \lambda_2$ is $\sqrt{b^2 4c}$. For det $(A + tB - \lambda I)$ we have b = -3 - 8t and $c = 2 + 16t - t^2$. The minimum of $b^2 - 4c$ is 1/17 at t = 2/17. Then $\lambda_2 - \lambda_1 = 1/\sqrt{17}$: close but not equal !
- **30** $S = \begin{bmatrix} 4 & 2+i \\ 2-i & 0 \end{bmatrix} = \overline{S}^{\mathrm{T}}$ has real eigenvalues $\lambda = 5$ and -1 with trace = 4 and

det = -5. The solution to **20** proves that λ is real when $\overline{S}^{T} = S$ is Hermitian.

31 (a) A = QΛQ^T times A^T = QΛ^TQ^T equals A^T times A because Q = Q^T and ΛΛ^T = Λ^TΛ (diagonal!) (b) Step 2: The 1, 1 entries of T^T T and TT^T are |a|² and |a|² + |b|². Equally makes b = 0 and T = Λ.

- **32** a_{11} is $\left[q_{11} \ldots q_{1n}\right] \left[\lambda_1 \overline{q}_{11} \ldots \lambda_n \overline{q}_{1n}\right]^{\mathrm{T}} \leq \lambda_{\max} \left(|q_{11}|^2 + \cdots + |q_{1n}|^2\right) = \lambda_{\max}$.
- **33** (a) $\boldsymbol{x}^{\mathrm{T}}(A\boldsymbol{x}) = (A\boldsymbol{x})^{\mathrm{T}}\boldsymbol{x} = \boldsymbol{x}^{\mathrm{T}}A^{\mathrm{T}}\boldsymbol{x} = -\boldsymbol{x}^{\mathrm{T}}A\boldsymbol{x}$. (b) $\overline{\boldsymbol{z}}^{\mathrm{T}}A\boldsymbol{z}$ is pure imaginary, its real part is $\boldsymbol{x}^{\mathrm{T}}A\boldsymbol{x} + \boldsymbol{y}^{\mathrm{T}}A\boldsymbol{y} = 0 + 0$ (c) det $A = \lambda_1 \dots \lambda_n \ge 0$: pairs of λ 's = ib, -ib.
- **34** Since S is diagonalizable with eigenvalue matrix $\Lambda = 2I$, the matrix S itself has to be $X\Lambda X^{-1} = X(2I)X^{-1} = 2I$. (The unsymmetric matrix [2 1 ; 0 2] also has $\lambda = 2, 2$.)
- **35** (a) $S^{\mathrm{T}} = S$ and $S^{\mathrm{T}}S = I$ lead to $S^2 = I$.
 - (b) The only possible eigenvalues of S are 1 and -1.

(c)
$$\Lambda = \begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix}$$
 so $S = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \Lambda \begin{bmatrix} Q_1^T \\ Q_2^T \end{bmatrix} = Q_1 Q_1^T - Q_2 Q_2^T$ with $Q_1^T Q_2 = 0$.

- **36** $(A^{T}SA)^{T} = A^{T}S^{T}A^{TT} = A^{T}SA$. This matrix $A^{T}SA$ may have different eigenvalues from S, but the "inertia theorem" says that the two sets of eigenvalues have the same signs. The inertia = number of (positive, zero, negative) eigenvalues is the same for S and $A^{T}SA$.
- **37** Substitute $\lambda = a$ to find det $(S aI) = a^2 a^2 ca + ac b^2 = -b^2$ (negative). The parabola crosses at the eigenvalues λ because they have det $(S \lambda I) = 0$.

Problem Set 6.5, page 358

- **1** Suppose a > 0 and $ac > b^2$ so that also $c > b^2/a > 0$.
 - (i) The eigenvalues have the same sign because $\lambda_1 \lambda_2 = \det = ac b^2 > 0$.
 - (ii) That sign is *positive* because $\lambda_1 + \lambda_2 > 0$ (it equals the trace a + c > 0).

2 Only $S_4 = \begin{bmatrix} 1 & 10 \\ 10 & 101 \end{bmatrix}$ has two positive eigenvalues since $101 > 10^2$. $\boldsymbol{x}^{\mathrm{T}}S_1\boldsymbol{x} = 5x_1^2 + 12x_1x_2 + 7x_2^2$ is negative for example when $x_1 = 4$ and $x_2 = -3$: A_1 is not positive definite as its determinant confirms; S_2 has trace c_0 ; S_3 has det = 0.

$$\begin{array}{cccc} \mathbf{3} & \text{Positive definite} & \begin{bmatrix} 1 & 0 \\ b & 1 \end{bmatrix} \begin{bmatrix} 1 & b \\ 0 & 9 - b^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ b & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 9 - b^2 \end{bmatrix} \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} = LDL^{\mathrm{T}} \\ \begin{array}{c} \text{Positive definite} & \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 0 & c - 8 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & c - 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = LDL^{\mathrm{T}}. \\ \begin{array}{c} \text{Positive definite} & \\ \text{for } c > b \end{bmatrix} \quad L = \begin{bmatrix} 1 & 1 \\ -b/c & 0 \end{bmatrix} \quad D = \begin{bmatrix} c & 0 \\ 0 & c - b/c \end{bmatrix} \quad S = LDL^{\mathrm{T}}. \end{array}$$

4
$$f(x,y) = x^2 + 4xy + 9y^2 = (x+2y)^2 + 5y^2$$
; $x^2 + 6xy + 9y^2 = (x+3y)^2$.

5 $x^2 + 4xy + 3y^2 = (x+2y)^2 - y^2 = difference of squares is negative at <math>x = 2, y = -1,$ where the first square is zero. Γ

-

6
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 produces $f(x, y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 2xy$. A has $\lambda = 1$ and -1 . Then A is an *indefinite matrix* and $f(x, y) = 2xy$ has a *saddle point*.

7
$$A^{\mathrm{T}}A = \begin{bmatrix} 1 & 2 \\ 2 & 13 \end{bmatrix}$$
 and $A^{\mathrm{T}}A = \begin{bmatrix} 6 & 5 \\ 5 & 6 \end{bmatrix}$ are positive definite; $A^{\mathrm{T}}A = \begin{bmatrix} 2 & 3 & 3 \\ 3 & 5 & 4 \\ 3 & 4 & 5 \end{bmatrix}$ is

singular (and positive semidefinite). The first two A's have independent columns. The 2 by 3 A cannot have full column rank 3, with only 2 rows; $A^{T}A$ is singular.

$$8 \ S = \begin{bmatrix} 3 & 6 \\ 6 & 16 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}.$$
Pivots 3, 4 outside squares, ℓ_{ij} inside.
$$x^{T}Sx = 3(x+2y)^{2} + 4y^{2}$$
$$9 \ S = \begin{bmatrix} 4 & -4 & 8 \\ -4 & 4 & -8 \\ 8 & -8 & 16 \end{bmatrix}$$
has only one pivot = 4, rank $S = 1$,
eigenvalues are 24, 0, 0, det $S = 0$.
$$10 \ S = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$
has pivots $T = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$ is singular; $T \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$

11 Corner determinants
$$|S_1| = 2$$
, $|S_2| = 6$, $|S_3| = 30$. The pivots are $2/1, 6/2, 30/6$.

12 S is positive definite for c > 1; determinants $c, c^2 - 1$, and $(c - 1)^2(c + 2) > 0$. T is *never* positive definite (determinants d - 4 and -4d + 12 are never both positive). **13** $S = \begin{bmatrix} 1 & 5 \\ 5 & 10 \end{bmatrix}$ is an example with a + c > 2b but $ac < b^2$, so not positive definite.

- 14 The eigenvalues of S^{-1} are positive because they are $1/\lambda(S)$. Also the entries of S^{-1} pass the determinant tests. And $\boldsymbol{x}^{\mathrm{T}}S^{-1}\boldsymbol{x} = (S^{-1}\boldsymbol{x})^{\mathrm{T}}S(S^{-1}\boldsymbol{x}) > 0$ for all $\boldsymbol{x} \neq \boldsymbol{0}$.
- 15 Since $x^{\mathrm{T}}Sx > 0$ and $x^{\mathrm{T}}Tx > 0$ we have $x^{\mathrm{T}}(S+T)x = x^{\mathrm{T}}Sx + x^{\mathrm{T}}Tx > 0$ for all $x \neq 0$. Then S + T is a positive definite matrix. The second proof uses the test $S = A^{T}A$ (independent columns in A): If $S = A^{T}A$ and $T = B^{T}B$ pass this test, then $S + T = \begin{bmatrix} A & B \end{bmatrix}^T \begin{vmatrix} A \\ B \end{vmatrix}$ also passes, and must be positive definite.
- **16** $\boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x}$ is zero when $(x_1, x_2, x_3) = (0, 1, 0)$ because of the zero on the diagonal. Actually $x^{T}Sx$ goes *negative* for x = (1, -10, 0) because the second pivot is *negative*.
- 17 If a_{ij} were smaller than all λ 's, $S a_{ij}I$ would have all eigenvalues > 0 (positive definite). But $S - a_{jj}I$ has a zero in the (j, j) position; impossible by Problem 16.
- **18** If $Sx = \lambda x$ then $x^{T}Sx = \lambda x^{T}x$. If S is positive definite this leads to $\lambda = x^{T}Sx/x^{T}x > x^{T}x$ 0 (ratio of positive numbers). So positive energy \Rightarrow positive eigenvalues.
- **19** All cross terms are $x_i^{\mathrm{T}} x_j = 0$ because symmetric matrices have orthogonal eigenvectors. So positive eigenvalues \Rightarrow positive energy.
- **20** (a) The determinant is positive; all $\lambda > 0$ (b) All projection matrices except I are singular (c) The diagonal entries of D are its eigenvalues (d) S = -I has det = +1 when n is even.
- **21** S is positive definite when s > 8; T is positive definite when t > 5 by determinants.
- $\mathbf{22} \ A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ \hline & \sqrt{1} \end{bmatrix} \begin{bmatrix} \sqrt{9} \\ -1 & 1 \\ \hline & \sqrt{2} \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}; A = Q \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix} Q^{\mathrm{T}} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}.$
- **23** $x^2/a^2 + y^2/b^2$ is $x^T S x$ when $S = \text{diag}(1/a^2, 1/b^2)$. Then $\lambda_1 = 1/a^2$ and $\lambda_2 = 1/b^2$ so $a = 1/\sqrt{\lambda_1}$ and $b = 1/\sqrt{\lambda_2}$. The ellipse $9x^2 + 16y^2 = 1$ has axes with half-lengths $a = \frac{1}{3}$ and $b = \frac{1}{4}$. The points $(\frac{1}{3}, 0)$ and $(0, \frac{1}{4})$ are at the ends of the axes.
- **24** The ellipse $x^2 + xy + y^2 = 1$ has axes with half-lengths $1/\sqrt{\lambda} = \sqrt{2}$ and $\sqrt{2/3}$.

25
$$S = C^{\mathrm{T}}C = \begin{bmatrix} 9 & 3 \\ 3 & 5 \end{bmatrix}; \begin{bmatrix} 4 & 8 \\ 8 & 25 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 9 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \text{ and } C = \begin{bmatrix} 2 & 4 \\ 0 & 3 \end{bmatrix}$$

26 The Cholesky factors $C = (L\sqrt{D})^{\mathrm{T}} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix} \text{ and } C = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & \sqrt{5} \end{bmatrix}$ have square roots of the pivots from D . Note again $C^{\mathrm{T}}C = LDL^{\mathrm{T}} = S$.

- 27 Writing out $x^{T}Sx = x^{T}LDL^{T}x$ gives $ax^{2} + 2bxy + cy^{2} = a(x + \frac{b}{a}y)^{2} + \frac{ac-b^{2}}{a}y^{2}$. So the LDL^{T} from elimination is exactly the same as *completing the square*. The example $2x^{2} + 8xy + 10y^{2} = 2(x+2y)^{2} + 2y^{2}$ with pivots 2, 2 outside the squares and multiplier 2 inside.
- 28 det S = (1)(10)(1) = 10; λ = 2 and 5; x₁ = (cos θ, sin θ), x₂ = (-sin θ, cos θ); the λ's are positive. So S is positive definite.

29
$$S_1 = \begin{bmatrix} 6x^2 & 2x \\ 2x & 2 \end{bmatrix}$$
 is semidefinite; $f_1 = (\frac{1}{2}x^2 + y)^2 = 0$ on the curve $\frac{1}{2}x^2 + y = 0$;
 $S_2 = \begin{bmatrix} 6x & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ is indefinite at $(0, 1)$ where first derivatives $= 0$. Then $x = 0, y = 1$ is a saddle point of the function $f_2(x, y)$.

- **30** $ax^2 + 2bxy + cy^2$ has a saddle point if $ac < b^2$. The matrix is *indefinite* ($\lambda < 0$ and $\lambda > 0$) because the determinant $ac b^2$ is *negative*.
- **31** If c > 9 the graph of z is a bowl, if c < 9 the graph has a saddle point. When c = 9 the graph of $z = (2x + 3y)^2$ is a "trough" staying at zero along the line 2x + 3y = 0.
- **32** Orthogonal matrices, exponentials e^{At} , matrices with det = 1 are groups. Examples of subgroups are orthogonal matrices with det = 1, exponentials e^{An} for integer n. Another subgroup: lower triangular elimination matrices E with diagonal 1's.
- **33** A product ST of symmetric positive definite matrices comes into many applications. The "generalized" eigenvalue problem $Kx = \lambda Mx$ has $ST = M^{-1}K$. (Often we use

eig(K, M) without actually inverting M.) All eigenvalues λ are positive:

$$ST \boldsymbol{x} = \lambda \boldsymbol{x}$$
 gives $(T \boldsymbol{x})^{\mathrm{T}} ST \boldsymbol{x} = (T \boldsymbol{x})^{\mathrm{T}} \lambda x$. Then $\lambda = \boldsymbol{x}^{\mathrm{T}} T^{\mathrm{T}} ST \boldsymbol{x} / \boldsymbol{x}^{\mathrm{T}} T \boldsymbol{x} > 0$.

- **34** The five eigenvalues of K are $2 2 \cos \frac{k\pi}{6} = 2 \sqrt{3}$, 2 1, 2, 2 + 1, $2 + \sqrt{3}$. The product of those eigenvalues is $6 = \det K$.
- **35** Put parentheses in $x^{T}A^{T}CAx = (Ax)^{T}C(Ax)$. Since *C* is assumed positive definite, this energy can drop to zero only when Ax = 0. Sine *A* is assumed to have independent columns, Ax = 0 only happens when x = 0. Thus $A^{T}CA$ has positive energy and is positive definite.

My textbooks *Computational Science and Engineering* and *Introduction to Applied Mathematics* start with many examples of $A^{T}CA$ in a wide range of applications. I believe this is a unifying concept from linear algebra.

- 36 (a) The eigenvectors of λ₁I − S are λ₁ − λ₁, λ₁ − λ₂,..., λ₁ − λ_n. Those are ≥ 0;
 λ₁I − S is semidefinite.
 - (b) Semidefinite matrices have energy $\boldsymbol{x}^{\mathrm{T}} (\lambda_1 I S) \boldsymbol{x}_2 \geq 0$. Then $\lambda_1 \boldsymbol{x}^{\mathrm{T}} \boldsymbol{x} \geq \boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x}$.
 - (c) Part (b) says $x^T S x / x^T x \le \lambda_1$ for all x. Equality at the eigenvector with $S x = \lambda_1 x$.
- **37** Energy $\mathbf{x}^{\mathrm{T}}S\mathbf{x} = a (x_1 + x_2 + x_3)^2 + c (x_2 x_3)^2 \ge 0$ if $a \ge 0$ and $c \ge 0$: semidefinite. *S* has rank ≤ 2 and determinant = 0; cannot be positive definite for any *a* and *c*.

Problem Set 6.6, page 360

1
$$B = GCG^{-1} = GF^{-1}AFG^{-1}$$
 so $M = FG^{-1}$. C similar to A and $B \Rightarrow A$ similar to B .
2 $A = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$ is similar to $B = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} = M^{-1}AM$ with $M = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

$$\mathbf{3} \ B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = M^{-1}AM;$$
$$B = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix};$$
$$B = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

4 A has no repeated λ so it can be diagonalized: $S^{-1}AS = \Lambda$ makes A similar to Λ .

5 $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$ are similar (they all have eigenvalues 1 and 0). $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is by itself and also $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ is by itself with eigenvalues 1 and -1.

6 *Eight families* of similar matrices: six matrices have $\lambda = 0$, 1 (one family); three matrices have $\lambda = 1$, 1 and three have $\lambda = 0$, 0 (two families each!); one has $\lambda = 1, -1$; one has $\lambda = 2$, 0; two matrices have $\lambda = \frac{1}{2}(1 \pm \sqrt{5})$ (they are in one family).

- 7 (a) (M⁻¹AM)(M⁻¹x) = M⁻¹(Ax) = M⁻¹0 = 0 (b) The nullspaces of A and of M⁻¹AM have the same *dimension*. Different vectors and different bases.
- and of $M^{-1}AM$ have the same *dimension*. Different vectors and different bases. **8** Same A Same S **9** $A^2 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$, $A^3 = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$, every $A^k = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$. $A^0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$. **10** $J^2 = \begin{bmatrix} c^2 & 2c \\ 0 & c^2 \end{bmatrix}$ and $J^k = \begin{bmatrix} c^k & kc^{k-1} \\ 0 & c^k \end{bmatrix}$; $J^0 = I$ and $J^{-1} = \begin{bmatrix} c^{-1} & -c^{-2} \\ 0 & c^{-1} \end{bmatrix}$. **11** $u(0) = \begin{bmatrix} 5 \\ 2 \end{bmatrix} = \begin{bmatrix} v(0) \\ w(0) \end{bmatrix}$. The equation $\frac{du}{dt} = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix} u$ has $\frac{dv}{dt} = \lambda v + w$ and $\frac{dw}{dt} = \lambda w$. Then $w(t) = 2e^{\lambda t}$ and v(t) must include $2te^{\lambda t}$ (this comes from the repeated λ). To match v(0) = 5, the solution is $v(t) = 2te^{\lambda t} + 5e^{\lambda t}$.

122

Solutions to Exercises

$$\mathbf{12} \text{ If } M^{-1}JM = K \text{ then } JM = \begin{bmatrix} m_{21} & m_{22} & m_{23} & m_{24} \\ 0 & \mathbf{0} & \mathbf{0} & 0 \\ m_{41} & m_{42} & m_{43} & m_{44} \\ 0 & 0 & 0 & 0 \end{bmatrix} = MK = \begin{bmatrix} \mathbf{0} & m_{12} & m_{13} & \mathbf{0} \\ 0 & m_{22} & m_{23} & 0 \\ 0 & m_{32} & m_{33} & 0 \\ 0 & m_{42} & m_{43} & 0 \end{bmatrix}.$$
That means $m_{12} = m_{13} = 0$. *M* is not invertible. I not similar to *K*

That means $m_{21} = m_{22} = m_{23} = m_{24} = 0$. *M* is not invertible, *J* not similar to *K*.

13 The five 4 by 4 Jordan forms with $\lambda = 0, 0, 0, 0$ are J_1 = zero matrix and

$J_2 =$	0	1	0	0	$J_3 =$	0	1	0	0
	0	0	0	0		0	0	1	0
	0	0	0	0		0	0	0	0
	0	0	0	0		0	0	0	0
$J_4 =$	0	1	0	0	$J_5 =$	0	1	0	0
	0	0	0	0		0	0	1	0
	0	0	0	1		0	0	0	1
	0	0	0	0		0	0	0	0

Problem 12 showed that J_3 and J_4 are *not similar*, even with the same rank. Every matrix with all $\lambda = 0$ is "*nilpotent*" (its *n*th power is A^n = zero matrix). You see $J^4 = 0$ for these matrices. How many possible Jordan forms for n = 5 and all $\lambda = 0$?

14 (1) Choose M_i = reverse diagonal matrix to get $M_i^{-1}J_iM_i = M_i^{\mathrm{T}}$ in each block (2) M_0 has those diagonal blocks M_i to get $M_0^{-1}JM_0 = J^{\mathrm{T}}$. (3) $A^{\mathrm{T}} = (M^{-1})^{\mathrm{T}}J^{\mathrm{T}}M^{\mathrm{T}}$ equals $(M^{-1})^{\mathrm{T}}M_0^{-1}JM_0M^{\mathrm{T}} = (MM_0M^{\mathrm{T}})^{-1}A(MM_0M^{\mathrm{T}})$, and A^{T} is similar to A.

15 det(M⁻¹AM - λI) = det(M⁻¹AM - M⁻¹λIM). This is det(M⁻¹(A - λI)M). By the product rule, the determinants of M and M⁻¹ cancel to leave det(A - λI).
16 a b is similar to d c ; b a is similar to c d . So two pairs of similar

6
$$\begin{bmatrix} c & d \end{bmatrix}$$
 is similar to $\begin{bmatrix} b & a \end{bmatrix}$; $\begin{bmatrix} d & c \end{bmatrix}$ is similar to $\begin{bmatrix} a & b \end{bmatrix}$. So two pairs of similar matrices but $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is not similar to $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$: different eigenvalues!

17 (a) *False*: Diagonalize a nonsymmetric $A = S\Lambda S^{-1}$. Then Λ is symmetric and similar (b) *True*: A singular matrix has $\lambda = 0$. (c) *False*: $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ are similar lar

(they have $\lambda = \pm 1$) (d) *True*: Adding *I* increases all eigenvalues by 1

- **18** $AB = B^{-1}(BA)B$ so AB is similar to BA. If $AB\mathbf{x} = \lambda \mathbf{x}$ then $BA(B\mathbf{x}) = \lambda(B\mathbf{x})$.
- **19** Diagonal blocks 6 by 6, 4 by 4; AB has the same eigenvalues as BA plus 6 4 zeros.

20 (a)
$$A = M^{-1}BM \Rightarrow A^2 = (M^{-1}BM)(M^{-1}BM) = M^{-1}B^2M$$
. So A^2 is similar to B^2 . (b) A^2 equals $(-A)^2$ but A may not be similar to $B = -A$ (it could be!).
(c) $\begin{bmatrix} 3 & 1 \\ 0 & 4 \end{bmatrix}$ is diagonalizable to $\begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix}$ because $\lambda_1 \neq \lambda_2$, so these matrices are similar.
(d) $\begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}$ has only one eigenvector, so not diagonalizable (e) PAP^T is similar to A .

21 J^2 has three 1's down the *second* superdiagonal, and *two* independent eigenvectors for $\lambda = 0$. Its 5 by 5 Jordan form is $\begin{bmatrix} J_3 \\ J_2 \end{bmatrix}$ with $J_3 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ and $J_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.

Note to professors: An interesting question: Which matrices A have (complex) square roots $R^2 = A$? If A is invertible, no problem. But any Jordan blocks for $\lambda = 0$ must have sizes $n_1 \ge n_2 \ge \ldots \ge n_k \ge n_{k+1} = 0$ that come in pairs like 3 and 2 in this example: $n_1 = (n_2 \text{ or } n_2+1)$ and $n_3 = (n_4 \text{ or } n_4+1)$ and so on. A list of all 3 by 3 and 4 by 4 Jordan forms could be $\begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$, $\begin{bmatrix} a & 1 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{bmatrix}$, $\begin{bmatrix} a & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & a \end{bmatrix}$ (for any numbers a, b, c) with 3, 2, 1 eigenvectors; diag(a, b, c, d) and $\begin{bmatrix} a & 1 & a \\ a & b \\ b & c \end{bmatrix}$, $\begin{bmatrix} a & 1 & a \\ a & b \\ a & b \end{bmatrix}$, $\begin{bmatrix} a & 1 & a \\ a & 1 \\ a & b \end{bmatrix}$, $\begin{bmatrix} a & 1 & a \\ a & 1 \\ a & a \\ a & a \end{bmatrix}$ with 4, 3, 2, 1 eigenvectors.

- 22 If all roots are λ = 0, this means that det(A λI) must be just λⁿ. The Cayley-Hamilton Theorem in Problem 6.2.32 immediately says that Aⁿ = zero matrix. The key example is a single n by n Jordan block (with n 1 ones above the diagonal): Check directly that Jⁿ = zero matrix.
- **23** Certainly Q_1R_1 is similar to $R_1Q_1 = Q_1^{-1}(Q_1R_1)Q_1$. Then $A_1 = Q_1R_1 cs^2I$ is similar to $A_2 = R_1Q_1 cs^2I$.
- **24** A could have eigenvalues $\lambda = 2$ and $\lambda = \frac{1}{2}$ (A could be diagonal). Then A^{-1} has the same two eigenvalues (and is similar to A).

Problem Set 6.7, page 371

$$\mathbf{1} \ A = U\Sigma V^{\mathrm{T}} = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 \end{bmatrix} \begin{bmatrix} \sigma_1 \\ 0 \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} 1 & 3 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} \sqrt{50} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$$

2 This $A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$ is a 2 by 2 matrix of rank 1. Its row space has basis v_1 , its nullspace has basis v_2 , its column space has basis u_1 , its left nullspace has basis u_2 :

Row space
$$\frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 Nullspace $\frac{1}{\sqrt{5}} \begin{bmatrix} 2 \\ -1 \end{bmatrix}$
Column space $\frac{1}{\sqrt{10}} \begin{bmatrix} 1 \\ 3 \end{bmatrix}$, $\mathbf{N}(A^{\mathrm{T}}) = \frac{1}{\sqrt{10}} \begin{bmatrix} 3 \\ -1 \end{bmatrix}$.

3 If A has rank 1 then so does $A^{T}A$. The only nonzero eigenvalue of $A^{T}A$ is its trace, which is the sum of all a_{ij}^2 . (Each diagonal entry of $A^{T}A$ is the sum of a_{ij}^2 down one column, so the trace is the sum down all columns.) Then σ_1 = square root of this sum, and σ_1^2 = this sum of all a_{ij}^2 .

4
$$A^{\mathrm{T}}A = AA^{\mathrm{T}} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$
 has eigenvalues $\sigma_1^2 = \frac{3+\sqrt{5}}{2}, \sigma_2^2 = \frac{3-\sqrt{5}}{2}$. But A is indefinite $\sigma_1 = (1+\sqrt{5})/2 = \lambda_1(A), \ \sigma_2 = (\sqrt{5}-1)/2 = -\lambda_2(A); \ \boldsymbol{u}_1 = \boldsymbol{v}_1 \text{ but } \boldsymbol{u}_2 = -\boldsymbol{v}_2.$

5 A proof that *eigshow* finds the SVD. When V₁ = (1,0), V₂ = (0,1) the demo finds AV₁ and AV₂ at some angle θ. A 90° turn by the mouse to V₂, -V₁ finds AV₂ and -AV₁ at the angle π - θ. Somewhere between, the constantly orthogonal v₁ and v₂ must produce Av₁ and Av₂ at angle π/2. Those orthogonal directions give u₁ and u₂.

$$\mathbf{6} \ AA^{\mathrm{T}} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \text{ has } \sigma_{1}^{2} = 3 \text{ with } \mathbf{u}_{1} = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \text{ and } \sigma_{2}^{2} = 1 \text{ with } \mathbf{u}_{2} = \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}.$$

$$A^{\mathrm{T}}A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix} \text{ has } \sigma_{1}^{2} = 3 \text{ with } \mathbf{v}_{1} = \begin{bmatrix} 1/\sqrt{6} \\ 2/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix}, \ \sigma_{2}^{2} = 1 \text{ with } \mathbf{v}_{2} = \begin{bmatrix} 1/\sqrt{2} \\ 0 \\ -1/\sqrt{2} \end{bmatrix};$$

$$\text{ and } \mathbf{v}_{3} = \begin{bmatrix} 1/\sqrt{3} \\ -1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix}. \text{ Then } \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{u}_{1} & \mathbf{u}_{2} \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} \end{bmatrix}^{\mathrm{T}}.$$

126

7 The matrix A in Problem 6 had $\sigma_1 = \sqrt{3}$ and $\sigma_2 = 1$ in Σ . The smallest change to rank 1 is **to make** $\sigma_2 = 0$. In the factorization

$$A = U\Sigma V^{\mathrm{T}} = \boldsymbol{u}_1 \sigma_1 \boldsymbol{v}_1^{\mathrm{T}} + \boldsymbol{u}_2 \sigma_2 \boldsymbol{v}_2^{\mathrm{T}}$$

this change $\sigma_2 \to 0$ will leave the closest rank-1 matrix as $\boldsymbol{u}_1 \sigma_1 \boldsymbol{v}_1^{\mathrm{T}}$. See Problem 14 for the general case of this problem.

- 8 The number $\sigma_{\max}(A^{-1})\sigma_{\max}(A)$ is the same as $\sigma_{\max}(A)/\sigma_{\min}(A)$. This is certainly \geq 1. It equals 1 if all σ 's are equal, and $A = U\Sigma V^{\mathrm{T}}$ is a multiple of an orthogonal matrix. The ratio $\sigma_{\max}/\sigma_{\min}$ is the important **condition number** of A studied in Section 9.2.
- **9** $A = UV^{\mathrm{T}}$ since all $\sigma_j = 1$, which means that $\Sigma = I$.
- **10** A rank-1 matrix with Av = 12u would have u in its column space, so $A = uw^{T}$ for some vector w. I intended (but didn't say) that w is a multiple of the unit vector $v = \frac{1}{2}(1, 1, 1, 1)$ in the problem. Then $A = 12uv^{T}$ to get Av = 12u when $v^{T}v = 1$.
- 11 If A has orthogonal columns w₁,..., w_n of lengths σ₁,..., σ_n, then A^TA will be diagonal with entries σ₁²,..., σ_n². So the σ's are definitely the singular values of A (as expected). The eigenvalues of that diagonal matrix A^TA are the columns of I, so V = I in the SVD. Then the u_i are Av_i/σ_i which is the unit vector w_i/σ_i.

The SVD of this A with orthogonal columns is $A = U\Sigma V^{T} = (A\Sigma^{-1})(\Sigma)(I)$.

- 12 Since $A^{T} = A$ we have $\sigma_{1}^{2} = \lambda_{1}^{2}$ and $\sigma_{2}^{2} = \lambda_{2}^{2}$. But λ_{2} is negative, so $\sigma_{1} = 3$ and $\sigma_{2} = 2$. The unit eigenvectors of A are the same $\boldsymbol{u}_{1} = \boldsymbol{v}_{1}$ as for $A^{T}A = AA^{T}$ and $\boldsymbol{u}_{2} = -\boldsymbol{v}_{2}$ (notice the sign change because $\sigma_{2} = -\lambda_{2}$, as in Problem 4).
- **13** Suppose the SVD of R is $R = U\Sigma V^{T}$. Then multiply by Q to get A = QR. So the SVD of this A is $(QU)\Sigma V^{T}$. (Orthogonal Q times orthogonal U = orthogonal QU.)
- 14 The smallest change in A is to set its smallest singular value σ_2 to zero. See # 7.

- **15** The singular values of A + I are not $\sigma_j + 1$. They come from eigenvalues of $(A + I)^T (A + I)$.
- 16 This simulates the random walk used by *Google* on billions of sites to solve Ap = p. It is like the power method of Section 9.3 except that it follows the links in one "walk" where the vector $p_k = A^k p_0$ averages over all walks.
- **17** $A = U\Sigma V^{\mathrm{T}} = [\text{cosines including } \boldsymbol{u}_4] \operatorname{diag}(\operatorname{sqrt}(2 \sqrt{2}, 2, 2 + \sqrt{2})) [\text{sine matrix}]^{\mathrm{T}}.$ $AV = U\Sigma$ says that differences of sines in V are cosines in U times σ 's.

The SVD of the *derivative* on $[0, \pi]$ with f(0) = 0 has $\boldsymbol{u} = \sin nx$, $\sigma = n$, $\boldsymbol{v} = \cos nx$!