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Solutions to Exercises 99

Problem Set 6.1, page 298

1 The eigenvalues are 1 and 0.5 for A, 1 and 0.25 for A2, 1 and 0 for A>°. Exchanging
the rows of A changes the eigenvalues to 1 and —0.5 (the trace is now 0.2 + 0.3).

Singular matrices stay singular during elimination, so A = 0 does not change.

2 Ahas \; = —1 and \y; = 5 with eigenvectors 1 = (—2,1) and zo = (1,1). The
matrix A 4 I has the same eigenvectors, with eigenvalues increased by 1 to 0 and 6.

That zero eigenvalue correctly indicates that A + 1 is singular.

3 Ahas A\ = 2 and \; = —1 (check trace and determinant) with ; = (1,1) and

@y = (2,—1). A~! has the same eigenvectors, with eigenvalues 1/\ = 1 and —1.

4 det(A—XI)=A2+X—6=(A+3)(A—2). Then Ahas \; = —3 and Ay = 2 (check
trace = —1 and determinant = —6) with ¢; = (3,—2) and 3 = (1,1). A? has the

same eigenvectors as A, with eigenvalues /\% =9and )\g =4,

5 A and B have eigenvalues 1 and 3 (their diagonal entries : triangular matrices). A + B
has A2 + 8\ + 15 = 0 and \; = 3, Ay = 5. Eigenvalues of A + B are not equal to

eigenvalues of A plus eigenvalues of B.

6 Aand Bhave \; = 1 and A\, = 1. AB and BA have \> — 4\ + 1 and the quadratic
formula gives A = 2 + /3. Eigenvalues of AB are not equal to eigenvalues of A times
eigenvalues of B. Eigenvalues of AB and BA are equal (this is proved at the end of
Section 6.2).

7 The eigenvalues of U (on its diagonal) are the pivots of A. The eigenvalues of L (on its

diagonal) are all 1’s. The eigenvalues of A are not the same as the pivots.
8 (a) Multiply Az to see Ax which reveals A (b) Solve (A — AI)xz = 0 to find x.
9 (a) Multiply by A: A(Azx) = A(\x) = Az gives A%z = X’z

(b) Multiplyby A™l: . = A1 Ax = A=\ = \A "z gives A~ la = im

() AddIz=x: (A+ 1z =(A+1)x.
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det(A — X) = d? — 1.4\ + 0.4 s0 A has \; = 1 and Ay = 0.4 with ; = (1,2) and
x2 = (1,—1). A has \; = 1 and \y = 0 (same eigenvectors). A% has \; = 1 and
Ao = (0.4)% which is near zero. So A% is very near A*°: same eigenvectors and

close eigenvalues.

Columns of A— A1 are in the nullspace of A— A1 because M = (A— oI )(A—\1)
is the zero matrix [this is the Cayley-Hamilton Theorem in Problem 6.2.30].
Notice that M has zero eigenvalues (A1 —X2)(A1—A1) = 0and (Aa—X2)(Aa—XA1) = 0.

So those columns solve (A — Ao) & = 0, they are eigenvectors.

The projection matrix P has A = 1,0, 1 with eigenvectors (1, 2,0), (2, —1,0), (0,0, 1).
Add the first and last vectors: (1,2,1) also has A = 1. The whole column space of P
contains eigenvectors with A = 1! Note P2 = P leadsto A2 = Aso A = O or 1.

Tu)=usorA=1 (b) Pv= (uub)v =u(utv)=0

(©) 1 =(-1,1,0,0), 2 = (—3,0,1,0), 3 = (—5,0,0, 1) all have Px = 0x = 0.

(@) Pu= (uvul)u =u(u

det(Q — A1) = A2 —2\cosf+1 = 0when A\ = cosf@+isinf = e and e*?. Check
that A1 A = 1 and A\; + Ay = 2cosf. Two eigenvectors of this rotation matrix are
x1 = (1,4) and &3 = (1, —4) (more generally cx; and dxo with cd # 0).

The other two eigenvalues are A = %(—1 + i/3). The three eigenvalues are 1,1, —1.
Set A =0indet(A—A)= (A —A)...(Ap = A tofinddet A = (A1)(A2) -+ - (Ap).

M = Ha+d+/(a—d)?>+4bc) and Ny = $(a +d—V ) add to a + d.
IfAhasAl:3and/\2:4thendet(A—/\I):(/\—3)(/\—4):/\2—7/\+12

4 0 3 2
These 3 matrices have A = 4 and 5, trace 9, det 20: , ,
0 5 -1 6 -3 7
(a) rank = 2 (b) det(BTB) =0 (d) eigenvalues of (B2 +I)~tare 1,1, 1.
0 1
A= has trace 11 and determinant 28, so A = 4 and 7. Moving to a 3 by
—28 11

3 companion matrix, for eigenvalues 1,2, 3 we want det(C' — A\I) = (1 — \)(2 — \)
(3 — ). Multiply out to get —A\3 + 62 — 11\ + 6. To get those numbers 6, —11,6

from a companion matrix you just put them into the last row:
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0 1 0
C=10 0 1| Notice the trace 6 = 1 4+ 2 + 3 and determinant 6 = (1)(2)(3).

6 —11 6

(A — XI) has the same determinant as (A — AI)" because every square matrix has

det M = det MT. Pick M = A — \I.

1 0 1 1| have different
and

1 0 0 0| -eigenvectors.

The eigenvalues must be A = 1 (because the matrix is Markov), O (for singular), —%
(so sum of eigenvalues = trace = %)

0 0 0 1 -1 1 Always A? is the zero matrix if A\ = 0 and 0,

1 0ol |0 o] |-1 1| by the Cayley-Hamilton Theorem in Problem 6.2.30.

A = 0,0, 6 (notice rank 1 and trace 6). Two eigenvectors of uv™ are perpendicular to

v and the third eigenvector is u: &1 =(0,—-2,1), z2=(1,—-2,0), z3=(1,2,1).

When A and B have the same n A’s and «’s, look at any combination v = c;x; +
<o+ 4 cpy,. Multiply by A and B: Av = ci\i®y + -+ + ep A\p@y, equals By =

Ay + - + e\ xy, for all vectors v. So A = B.

The block matrix has A = 1, 2 from B and A = 5, 7 from D. All entries of C are
multiplied by zeros in det(A — AT), so C has no effect on the eigenvalues of the block

matrix.

A has rank 1 with eigenvalues 0, 0, 0, 4 (the 4 comes from the trace of A). C has rank
2 (ensuring two zero eigenvalues) and (1,1, 1, 1) is an eigenvector with A = 2. With

trace 4, the other eigenvalue is also A = 2, and its eigenvectoris (1, —1,1,—1).

Subtract from 0,0,0,4 in Problem 27. B = A — T has A = —1, —1, —1, 3 and
C=1—-Ahas\=1,1,1,—3. Both have det = —3.

Alis triangular: A(A) = 1,4,6; A(B) = 2, V/3, —/3: C has rank one : AC) =0,0,6.
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a b 1 a+b 1
30 = = (a+b) ; A2 = d — b to produce the correct trace

c df |1 c+d 1
(a+b)+(d—b)=a+d
31 Eigenvector (1,3,4) for A with A = 11 and eigenvector (3,1,4) for PAPT with
A = 11. Eigenvectors with A # 0 must be in the column space since Ax is always

in the column space, and x = Ax/\.

32 (a) w is a basis for the nullspace (we know Au = Ow); v and w give a basis for the
column space (we know Av and Aw are in the column space).
(b) A(v/3+w/5) =3v/3+5w/5 = v+ w. Sox = v/3 + w/5 is a particular
solution to Ax = v + w. Add any cu from the nullspace

(¢) If Az = w had a solution, u would be in the column space: wrong dimension 3.

T

33 Always (uv?)u = u(vTu) so u is an eigenvector of uv™ with A = vTu. (watch

T T

numbers v u, vectors u, matrices uvT!!) If vTu = 0 then 42 = u(vTu)v? is the

zero matrix and A2 = 0,0 and A = 0,0 and trace (A) = 0. This zero trace also comes

from adding the diagonal entries of A = uv™:

U1 U1V ULV2 T
A= v v | = has trace u;v1 + usve = v u =0
U2 UgV1  UV2

34 det(P — M) = 0 gives the equation A* = 1. This reflects the fact that P* = TI.
The solutions of A* = 1 are A\ = 1,4, —1, —i. The real eigenvector z; = (1,1,1,1)
is not changed by the permutation P. Three more eigenvectors are (1,i,42,4%) and
(1,—-1,1,—1) and (1, —i, (—i)2, (—i)?).

35 The six 3 by 3 permutation matrices include P = I and three single row exchange
matrices Pj, Pi3, Po3 and two double exchange matrices like Pyo P;3. Since PTP = I
gives (det P)? = 1, the determinant of P is 1 or —1. The pivots are always 1 (but there
may be row exchanges). The trace of P can be 3 (for P = I) or 1 (for row exchange)

27i/3

or O (for double exchange). The possible eigenvalues are 1 and —1 and e and

67271'7,/3.
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36 AB — BA = I can happen only for infinite matrices. If AT = A and BT = — B then

aTx =27 (AB — BA)z = 27 (A"B + BT A) z < ||Az|| ||Bz|| + || Bz|| || Az|].
Therefore || Az ||| Ba|| > 1l[||? and (|| Az||/||/]) (| Bz]|/|z]) > 1.

37 A = e2™/3 and Ny = e 27/3 give det \{Ay = 1 and trace \; + Xy = —1.

cosf —sinf| o )
A= with @ = — has this trace and det. So does every M ~*AM!
sinf  cosf 3

38 (a) Since the columns of A add to 1, one eigenvalue is A = 1 and the other is ¢ — 0.6

(to give the correct trace ¢ + 0.4).

(b) If ¢ = 1.6 then both eigenvalues are 1, and all solutions to (A — I) x = 0 are

multiples of & = (1, —1). In this case A has rank 1.

(c) If ¢ = 0.8, the eigenvectors for A = 1 are multiples of (1, 3). Since all powers A"

1
also have column sums = 1, A™ will approach 1 = rank-1 matrix A with

3 3
eigenvalues 1, 0 and correct eigenvectors. (1,3) and (1, —1).

Problem Set 6.2, page 314

1 2 1 1 1 0 1 -1
1 Eigenvectorsin X and eigenvaluesin A. Then A = XAX ~!is =
0 3 0 1({]0 3] (0 1
The second matrix has A = 0 (rank 1) and A\ = 4 (trace = 4). Then A = XAX ! is
11 1 1] |o ofl |2 -3
_ 1 1
3 3 L 3] |0 4L 1
Put the eigenvectors in X 1 1 2 0 1 -1 2 3
and eigenvalues 2,5 in A. 0 1{]0 5] 10 1 0 5

3 If A = XAX~! then the eigenvalue matrix for A + 21 is A + 21 and the eigenvector
matrix is still X. So A+ 2/ = S(A +2)X ' = XAX '+ X(2) X' = A+ 21
4 (a) False: We are not given the \’s  (b) True (c) True (d) False: For this we

would need the eigenvectors of X



104 Solutions to Exercises

5 With X = I, A = XAX~! = A is a diagonal matrix. If X is triangular, then X ~! is

10

11

12

13

14

triangular, so X AX ~? is also triangular.

The columns of S are nonzero multiples of (2,1) and (0,1): either order. The same

eigenvector matrices diagonalize A and A~1.

11 [a 1o MAA A=A
A= XAX"! = ' o= |THTTEO TR
1 -1 A 1 -1 A=A A1+ X
a b
These are the matrices , their eigenvectors are (1,1) and (1, —1).
b a
1 A A1 0 1 =
A=XAX"t= = e 2
Lol MMl o1 lo x| |-1 oA
XAkal B 1 )\1 )\2 )\If 0 1 —)\2 1

A=de g g lo M| -1 a0

The second component is Fy, = (\F — A\5) /(A1 — Ao).

G G 5.5
(a) The equations are R A i with A = . This matrix
Gri1 G 1 0
has Ay =1, Ao = —1 with; = (1,1), @ = (1,-2)
112 1 2 1
111 o 2 3 i3
(b) A" = XA"X ! = R Y/
_ _5)n 1 1 2 1
12| |0 (=5 |4 -2 2 1

The rule Fj, 1o = Fj41 + F} produces the pattern: even, odd, odd, even, odd, odd, . . .

(a) True (no zero eigenvalues) (b) False (repeated A = 2 may have only one line of

eigenvectors) (c) False (repeated A may have a full set of eigenvectors)
(a) False: don’t know if A = 0 or not.
(b) True: an eigenvector is missing, which can only happen for a repeated eigenvalue.

(c) True: We know there is only one line of eigenvectors.
8 3 9 4 10 5 only eigenvectors
A= (or other), A = , A= ;
-3 2 —4 1 -5 0| arex = (c,—c).
The rank of A — 37 is r = 1. Changing any entry except a;2 = 1 makes A

diagonalizable (the new A will have two different eigenvalues)
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15 A% = X A* X ~! approaches zero if and only if every |A| < 1; A; is a Markov matrix
SO Apax = 1 andA’f — A, Ashas A = .6 £ .35014’2C — 0.

. . 10 11 10
16 A;is XAX ! with A = and X = (AR
0 .2 1 -1 0 O
1 1
Then A1k = XA*X~! — ? ? : steady state.
2 2
. . 9 0 3 -3 3 3
17 Ay is XAX ! with A = and X = ; AL = (.9)10
0 .3 1 1 1 1
3 3 3
A0 = (.3)10 . Then Ai° = (.9)10 + (.3)10 because
-1 -1 0 1 —1
. 3
is the sum of +
0 1 —1
2 — 1 -1 1 0 1 1
18 =XAX"1=2 and
-1 2 211 1|0 3||-1 1

1|1+38 1-3F
Multiply those last three matrices to get A% = ~
211-3% 143k

1 1|15 0 1 1 5k Bk _ 4k
19 BF = XAkX-1 = _
0 —1|1]0 4 0 —1 0 4k

20 det A = (det X)(det A)(det X 1) = det A = Ay - - \,. This proof (det = product

of \’s) works when A is diagonalizable. The formula is always true.

21 trace XY = (aq + bs) + (er + dt) is equal to (qa + rc¢) + (sb + td) = traceY X.
Diagonalizable case: the trace of X AX ~! = trace of (AX 1) X = A: sum of the \’s.
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AB — BA = 1 is impossible since trace AB — trace BA = zero # trace I.

10
AB — BA = C is possible when trace (C') = 0. For example £ = has
1 1
-1 0
EET - E'E = = C with trace zero.
0 1
A 0 X 0 (A O] |Xt 0
If A= XAX !then B = = . So
0 24 0 X 0 2A 0 X1

B has the original A\’s from A and the additional eigenvalues 21, . .., 2\, from 2A.

The A’s form a subspace since cA and A; + A5 all have the same X. When X = [
the A’s with those eigenvectors give the subspace of diagonal matrices. The dimension

of that matrix space is 4 since the matrices are 4 by 4.

If A has columns x4, . . ., ,, then column by column, A2 = A means every Ax; = x;.
All vectors in the column space (combinations of those columns x;) are eigenvectors
with A = 1. Always the nullspace has A = 0 (A might have dependent columns,
so there could be less than n eigenvectors with A = 1). Dimensions of those spaces
C (A) and N (A) add to n by the Fundamental Theorem, so A is diagonalizable (n

independent eigenvectors altogether).

Two problems: The nullspace and column space can overlap, so « could be in both.

There may not be 7 independent eigenvectors in the column space.

1 1|13 11 2 1
R=XVAX"' = /2= has R?=A.
1 -1 1|1 -1 1 2

V/B needs A = /9 and \/—1, trace (their sum) is not real so v/B cannot be real. Note

that | has fwo imaginary eigenvalues v/—1 = ¢ and —i, real trace 0, real
0 -1

0 1
-1 0

square root

The factorizations of A and B into XAX ! are the same. So A = B. (This is

the same as Problem 6.1.25, expressed in matrix form.)
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A= XA X 'and B = XA, X!, Diagonal matrices always give A;Ay = AyA;.
Then AB = BA from

XA X XA X = XAJA9X = XAgA1 X1 = XA X' XA X! = BA.

a b b a—d b
(a) A= has A =aand A = d: (A—al)(A—dI) =
0 d 0 d—a 0 0

00 11 2 1 .
= . () A= has A% = and A2 — A — I = 0 is true,
0 0 1 0 11

matching A2 — X\ — 1 = 0 as the Cayley-Hamilton Theorem predicts.

When A = XAX ™! is diagonalizable, the matrix A — \;I = X (A — X\, 1) X ! will

have 0 in the j, j diagonal entry of A — \;I. The product p(A) becomes
p(A)=(A-X\I)-- (A= D)= XA = I)--- (A= X\, )X L.

That product is the zero matrix because the factors produce a zero in each

diagonal position. Then p(A) = zero matrix, which is the Cayley-Hamilton Theorem.

(If A is not diagonalizable, one proof is to take a sequence of diagonalizable matrices

approaching A.)
Comment 1 have also seen the following Cayley-Hamilton proof but I am not con-

vinced:

Apply the formula ACT = (det A)I from Section 5.3 to A — A\ with variable \. Its

cofactor matrix C' will be a polynomial in )\, since cofactors are determinants:
(A—A)CT = det(A — XTI =p\)I.

“For fixed A, this is an identity between two matrix polynomials.” Set A = A to find
the zero matrix on the left, so p(A) = zero matrix on the right—which is the Cayley-

Hamilton Theorem.

I am not certain about the key step of substituting a matrix for \. If other matrices B
are substituted for A, does the identity remain true? If AB # BA, even the order of

multiplication seems unclear . . .
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32 If AB = BA, then B has the same eigenvectors (1,0) and (0,1) as A. So B is

also diagonal b = ¢ = 0. The nullspace for the following equation is 2-dimensional:

1 0 a b a b 1 0 0 -b 0 O
AB — BA = — — _
0 2 c d c d 0 2 c 0 0 0

Those 4 equations 0 = 0, —b = 0,¢ = 0,0 = 0 have a 4 by 4 coefficient matrix with
rank 4 — 2 = 2.

33 Bhas A =i and —i, so B*has A* = 1 and 1 and B19%* = TI.

C has A = (1 4 +/3i)/2. This \ is exp(£7i/3) so A> = —1 and —1. Then C® = —T
which leads to C10%* = (—1)341C = —C.

cosf —sinf , ,
34 The eigenvalues of A = are A\ = €% and e~ (trace 2 cos 6 and

sin 6 cosf

determinant = 1). Their eigenvectors are (1, —3) and (1,14):

A= XAPX T = | /2
i e—ind i 1
(ema 4 efina)/g e cosnf —sinnb
(e — e=in0) /2i ... sinnf  cosnd

Geometrically, n rotations by # give one rotation by nf.

35 Columns of X times rows of AX ~! gives a sum of r rank-1 matrices (r = rank of A).

36 Multiply ones(n) * ones(n) = n * ones(n). This leadsto C' = —1/(n + 1).

AA~! = (eye(n) + ones(n)) * (eye(n) + C = ones(n))

=eye(n) + (1 4+ C + Cn) x ones(n) = eye(n).



Solutions to Exercises 109

Problem Set 6.3, page 332

1
1 Eigenvalues 4 and 1 with eigenvectors (1,0) and (1, —1) give solutions u; = e*
0
1 ) 1 1
and uy = €' LI w(0) = =3 +2 , then
-1 -2 0 -1
1 1
u(t) = 3ett + 2¢t
0 —1

2 z(t) = 2¢' solves dz/dt = z with z(0) = 2. Then dy/dt = 4y — 6e* with y(0) = 5
gives y(t) = 3e*! + 2¢! as in Problem 1.
3 (a) If every column of A adds to zero, this means that the rows add to the zero row.

So the rows are dependent, and A is singular, and A = 0 is an eigenvalue.

-2 3
(b) The eigenvalues of A = are A; = 0 with eigenvector ; = (3,2) and
2 -3
Ao = —5 (to give trace = —5) with x = (1, —1). Then the usual 3 steps:
4 3 1 _
1. Write u(0) = as + = x; + x2 = combination of eigenvectors
1 2 -1

0 t

2. The solutions follow those eigenvectors: €%z, and e 5!z

3. The solution u(t) = &1 + e~ 5!z, has steady state 1 = (3, 2) since e >t — 0.

4 dlv + w)/dt = (w—v)+ (v —w) = 0, so the total v + w is constant.
1 1 A =0 1 1
A= has with 1 = , Loy =
1 -1 Ay = —2 1 1
v(0) 30 1 1 v(1) =20+ 10e72  wv(oo) = 20
= =20 +10 leads to
w(0) 10 1 -1 w(l) =20 —10e=2  w(oo) = 20
d | v 1 -1
5 — = has A = 0 and A = +2: v(t) = 20 + 10e?* — —co as
dt | 4 -1 1
t — oo.
a
6 A= has real eigenvalues a+1 and a — 1. These are both negativeifa < —1.
1 a

In this case the solutions of ' = Aw approach zero.
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b —1
B = has complex eigenvalues b + ¢ and b — . These have negative real parts
1 b

if b < 0. In this case and all solutions of v' = Bwv approach zero.

7 A projection matrix has eigenvalues A = 1 and A = 0. Eigenvectors Px = « fill the

subspace that P projects onto: here @ = (1,1). Eigenvectors with Px = 0 fill the

perpendicular subspace: here & = (1, —1). For the solution to 4’ = — Pu,
3 2 1 2 0 1 1
u(0) = = + u(t)=e" +e% approaches
1 2 -1 2 -1 -1
6 — 2 1 .
8 has \y = 5, &1 = LA =2, o = ; rabbits r(t) = 20e5t +10e?,
2 1 1 2

w(t) = 10e® + 20e?!. The ratio of rabbits to wolves approaches 20/10; €5 dominates.

4 1 1 |1 . 1 4cost
9 (a) =2 +2 . (b) Thenu(t) = 2¢% +2e7 =
0 1 —1 1 —1 4sint
d ! 0 1
0 272V |2 Y| This correctly givesy’ =y’ and y”" = 4y+5y’.
dt y/_ _y// 4 5 y/
0 1 . o .
A= has det(A — AI) = A2 — 5\ — 4 = 0. Directly substituting y = e*! into
4 5

y’' =5y + Zly also gives A\? = 5\ + 4 and the same two values of \. Those values are
%(5 =+ v/41) by the quadratic formula.

0 1 1 ¢
11 The series for et is eAt = [ + ¢ + zeros =
0 0 0 1
t 1t 0 0) +4/'(0)t
Then | ] — v [ vO TV O s vt = 50) + 4/ 0)t
y'(t) 0 1] [¥'(0) y'(0)

solves the equation—the factor ¢ tells us that A had only one eigenvector: not diago-

nalizable.
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1
A= has trace 6, det 9, A = 3 and 3 with one independent eigenvector
-9 6

(1,3). Substitute y = te> to show that this gives the needed second solution (y = e3¢

is the first solution).

(a) y(t) = cos 3t and sin 3¢ solve y”" = —9y. Itis 3 cos 3¢ that starts with y(0) = 3 and

0 1
y'(0) = 0. (b) A= has det = 9: A = 3i and —3i with eigenvectors
-9 0
1 1 , 1 3cos 3t
= and . Thenu(t) = %e?’” +%e’3” =
31 —31 31 —31 —9sin 3t
When A is skew-symmetric, the derivative of ||u(t)||? is zero. Then ||u(t)| = |le**wu(0)||

stays at ||[u(0)]. So eA* is matrix orthogonal.

u, = 4and u(t) = ce’+4. For the matrix equation, the particular solution u, = A~'b
|4 1 0 4
is and u(t) = cyet + coet +
2 t 1 2
Substituting u = v gives ce“v = Ae“v — etbor (A —cl)v =borv = (A —

cI)~1b = particular solution. If ¢ is an eigenvalue then A — cI is not invertible.

1 0 1 1
(a) (b) (c) . These show the unstable cases
0 —1 0 1 -1 1
(@ M <0and )Xo >0 (b) \y >0and X2 >0 (c) A=a+tibwitha >0
Aty _ 204 14342 1 1 4443 _ 1242, 1 43,3
d/di(e?) = A+ A%t + 5 AB2 + AP 4+ = AT+ At + 5 A2 + G A3+ ).
This is exactly Ae“?, the derivative we expect.
) ] 1 —4t o 0 —4
eBt = I + Bt (short series with B? = 0) = . Derivative = =
0 1 0 0

The solution at time ¢ 4 T is eA(“+7)44(0). Thus e4? times e4” equals eA(¢+7),

1 4 1 4 1 0
= diagonalizes A = XAX 1,
0 0 0 -1 0 O
1 4 1 4 et 0 1 4 et 4et —4

Then et = XeM X1 = ; =
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) et 4det —4
A? = Agivese = T+ At+ L A2+ LA+ =T+ (" —1)A = .
0 1
o e -1 1 N
et = from 21 and e? = from 19. By direct multiplication
0 1 0 1
eAeB 75 eBeA 75 eAtB — €
0 1
11 1 1|1 of |1 -3 et L(ed—¢t
A= = 2 Then e4t = 3 )
0 3 0 2/(0o 3|0 1 0 et
Att =0,e? = I and Ae?t = A.
2 .
) 1 3 1 3
The matrix has 4% = = = A. Then all A» = A. So et =
0 0 0 0
et 3(e —1) _
T+ (t+t2)20 4+ )A=T+ (et —1)A = as in Problem 22.
0 0
(a) The inverse of e is e~ 4t (b) If Az = \x then ex = eMx and e # 0.

To see eMa, write (I + At + A2 + - Yz = (1 + M+ N2+ )z = Ma.

(z,y) = (e*,e~*) is a growing solution. The correct matrix for the exchanged
yl. | 2 2 , . .
u = is . It does have the same eigenvalues as the original matrix.
T -4 0
0 1 0|1 At 1 At
Invert toproduce U, 41 = U, =
At 1 At 1] (0 1 —At 11— (At)?

1 1 . )
At At =1, has A\ = €™/3 and e~*"/3. Both eigenvalues have \® = 1 so
-1 0

A® = I. Therefore Ug = ASU comes exactly back to U.

First A has A\ = 4-i and A* = I. 1-2n —2n )
Am = (=) Linear growth.
Second Ahas A = —1, —1 and 2n 2n + 1
) . . 1 1—a? 2a
With a = At/2 the trapezoidal step is U .11 = U,.

L+a® | 9, 1_42

That matrix has orthonormal columns = orthogonal matrix = | U 41 || = ||U .||

U,.
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31 (a) If Az = Az then the infinite cosine series gives (cos A)x = (cos \)x
(b) A(A) = 27w and 0 so cos A = 1 and 1 which means that cos A = T
(¢) u(t) = 3(cos2mt)(1,1)+1(cos0t)(1,—1) [u’ = Au has exp, u” = Aw has cos |

32 For proof 2, square the start of the series to see (I + A+ A% + 1A43)2 = [ + 24 +
1(24)% + £ (24)% + - - -. The diagonalizing proof is easiest when it works (needing
diagonalizable A).

Problem Set 6.4, page 345

Note A way to complete the proof at the end of page 334, (perturbing the matrix to pro-
duce distinct eigenvalues) is now on the course website: “Proofs of the Spectral Theorem.”

math.mit.edu/linearalgebra.

1 The first is ASA™T: symmetric but eigenvalues are different from 1 and —1 for S.
The second is ASA~!: same eigenvalues as S but not symmetric.
The third is ASAT = ASA~!: symmetric with the same eigenvalues as S.
This needed B = AT = A~ to be an orthogonal matrix.

2 (a) ASB stays symmetric like S when B = A"
(b) ASB is similar to S when B = A~!

To have both (a) and (b) we need B = AT = A~ to be an orthogonal matrix

1 3 6 0 -1 -2
= LA+ AT) + (A - AT
3A=|3 3 3|+|1 0 -3
6 3 5 2 3 ol ~ symmetric + skew-symmetric.

4 (ATCA)T = ATCT(AT)T = ATCA. When A is 6 by 3, C will be 6 by 6 and the
triple product ATC A is 3 by 3.

5 \ = 0,4, —2; unit vectors +(0, 1, —1)/v/2 and +(2,1,1)/+/6 and (1, —1, —1)/+/3.
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6 A=10and —5in A = , T = and have to be normalized to

unit vectors in ) =

Sl-
o

o

I

—_

2 1 2
1 The columns of () are unit eigenvectors of S
70Q= 3 2 -2 -1
Each unit eigenvector could be multiplied by —1

-1 -2 2

9 12
8 § = has A = 0 and 25 so the columns of () are the two eigenvectors:
12 16
8 .6
Q= or we can exchange columns or reverse the signs of any column.

-6 .8

1 2
9 (a) has A = —1and 3 (b) The pivots 1, 1 — b have the same signs as the \’s
2 1

(c) The trace is A1 + Ay = 2, so S can’t have two negative eigenvalues.

0 1
10 If A2 = Othenall \3 = O0soall A\ = 0asin A = . If A is symmetric then
0 0

A3 = QA2QT = 0 requires A = 0. The only symmetric A is Q 0 QT = zero matrix.

11 If ) is complex then \ is also an eigenvalue (Ax = XE). Always A + X is real. The

trace is real so the third eigenvalue of a 3 by 3 real matrix must be real.

12 If z is not real then A=z ™ Az /" x is not always real. Can’t assume real eigenvectors!

31 : -3 3 9 12 64 —.48 36 .48
13 =2 +4 ; =0 +25
1 1 11 _
_1 3 -1+ 4 14 12 16 48 .36 A48 .64
_ 2T
14 | 1 2 | isan Q matrixso Py + P» = 212} + Taxa = | T1 T2 =1,
T
L T

also Py Py = x1(z{ T2)x] = zero matrix.

Second proof: Py Py = P;(I — P;) = P, — P, = O since P2 = P;.
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0 b A 0 0 A
15 A = has A\ = ¢b and —¢b. The block matrices and are
-b 0 0 A A 0
also skew-symmetric with A = ¢b (twice) and A = —ib (twice).

16 M is skew-symmetric and orthogonal; \’s must be ¢, 7, —¢, —% to have trace zero.

i 1
17 A = has A = 0,0 and only one independent eigenvector = (i,1). The
1 —

good property for complex matrices is not AT = A (symmetric) but A’ =24 (Her-
mitian with real eigenvalues and orthogonal eigenvectors: see Problem 22 and Sec-

tion 9.2).

18 (a) If Az = Ay and ATy = Az then Bly; —z] =[—Az; ATy] = -\y; —=z].
So —\ is also an eigenvalue of B. (b) ATAz = AT(\y) = N\?2z. (c) A = —1, —1,
1,1; = =(1,0,-1,0), 3 =(0,1,0,-1), 3 = (1,0,1,0), =4 = (0,1,0,1).

0 0 1
19 The eigenvaluesof S= |0 (0 1| areO0, \/5, —\/§ by Problem 16 with

1 1 0
1 1 1
Ty = |—-1|,L2=1| 1 |,T3= 1

0 V2 -2

20 1. yisinthe nullspace of S and « is in the column space (that is also row space because
S = ST). The nullspace and row space are perpendicular so yTax = 0.
2. If S¢ = A\x and Sy = [y then shift S by 51 to have a zero eigenvalue that matches
Step1.(S — pI)x = (A — B)x and (S — SI)y = 0 and again x is perpendicular to y.

1 10 1 0 1 Perpendicular for A
21 ShasX = |1 -1 0|;BhasX =0 1 0|. Notperpendicular for S
0 0 1 0 0 2d since BT # B
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1 3+4i| —T )
22 §= is a Hermitian matrix (S~ = S). Its eigenvalues 6 and —4 are
3—4i 1

real. Adjust equations (1)—(2) in the text to prove that X is always real when S' =5

Sx = A\ leads to ST = A\Z. Transpose to TS = T '\ using 5 =&

Then Z' Sz = Z  \x and also ' Sz = EL \x. So A = \ is real.

1 2| (b) Truefrom AT = QAQT = A
23 (a) False. A = (d) False!
0 1 (c) True from S~! = QA~1QT

0 1
24 A and AT have the same \’s but the order of the z’s can change. A = has

-1 0
A1 = iand g = —i with &1 = (1,4) first for A but &, = (1, —4) is first for AT.
25 Aisinvertible, orthogonal, permutation, diagonalizable, Markov; B is projection, diag-

onalizable, Markov. A allows QR, XAX ', QAQT; B allows XAX ! and QAQ™.
26 Symmetry gives QAQ™ if b = 1; repeated ) and no X if b = —1; singular if b = 0.

27 Orthogonal and symmetric requires |A| = 1 and A real, so A = &1. Then S = +T or

S = QAQT cosf) —sinf 1 0 cosf sin6 cos 20 sin 26

sin 6 cosf 0 -1 —sinf cos6 sin26 — cos 260 '

28 Eigenvectors (1,0) and (1, 1) give a 45° angle even with AT very close to A.

29 The roots of A2 4+ b\ + ¢ = 0 are %(—b 4+ v/b2 — 4ac). Then Ay — g is Vb2 — 4c.
For det(A + tB — A\I) we have b = —3 — 8t and ¢ = 2 + 16t — 2. The minimum of
b> —4cis 1/17att = 2/17. Then Ay — A\; = 1/4/17: close but not equal !

30 S = ! 2H = §T has real eigenvalues A = 5 and —1 with trace = 4 and

2—1 0
det = —b5. The solution to 20 proves that X is real when S' = S is Hermitian.

31 a) A =QAQ" times AT = QATQT equals AT times A because Q = @T and
AAT = ATA (diagonal!) (b) Step 2: The 1,1 entries of 7T T and TT T are |a|?
and |a|? + |b|?. Equally makes b = 0 and 7' = A.
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32

33

34

35

36

37

T
a1 is |:q11 s qlni| |:/\1611 cen /\naln} < /\max (|Q11\2 +- ‘q1n|2) = >\rnax-
@) " (Az) = (Ax)Tx = 2TATx = —2TAx. (b) 2T Az is pure imaginary, its
real part is T Ax + yTAy = 0+ 0 (c) detA = A;...\, > 0 : pairs of \’s
= 1b, —1ib.

Since S is diagonalizable with eigenvalue matrix A = 27, the matrix .S itself has to be

XAX~1 = X(2I)X~! = 2I. (The unsymmetric matrix [2 1 ; 0 2] also has A = 2,2.)

(@) ST =8 and STS =TIleadto S? = I.

(b) The only possible eigenvalues of .S are 1 and —1.

et
Q3

(ATSA)T = ATSTATT = ATSA. This matrix ATSA may have different eigen-

() A= Lo so S= l@l Q2 = Q1Q] — Q2Q3 with QT Q2 = 0.

0 -—-I

values from .S, but the “inertia theorem” says that the two sets of eigenvalues have the
same signs. The inertia = number of (positive, zero, negative) eigenvalues is the same

for S and ATSA.

Substitute A = a to find det(S — al) = a® — a® — ca + ac — b*> = —b? (negative). The

parabola crosses at the eigenvalues A because they have det(S — AI) = 0.

Problem Set 6.5, page 358

1

2

Suppose a > 0 and ac > b? so that also ¢ > b*/a > 0.
(i) The eigenvalues have the same sign because A\; Ay = det = ac — b > 0.

(ii) That sign is positive because A\; + Ao > 0 (it equals the trace a + ¢ > 0).

Only Sy = has two positive eigenvalues since 101 > 102.
10 101

' S1x = 523 + 122129 + T3 is negative for example when z; = 4 and x5 = —3:

Aj is not positive definite as its determinant confirms; So has trace cg; S35 has det = 0.
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10

11

12

Solutions to Exercises

Positive definite 1 0 1 b 1 0 1 0 1 b

= =LDLT
for -3 <b<3 b 11|10 9—052 b 1[]0 9-¥||0 1
Positive definite [ 1 0] (2 4 1 0] (2 0 1 2

— =LDLT.
forc > 8 2 1|10 ¢—8 2 1|10 ¢—8|(0 1
Positive definite 1 1 c 0

L = D= S=LDLT.

forc > b —b/ec 0 0 c—b/ec

flx,y) = 2% + dxy + 92 = (v + 2y)? + 5¢y%; 22 + 62y + 9y = (z + 3y)>.
2% +4xy+3y? = (x+2y)% —y? = difference of squares is negative at x = 2,y = —1,
where the first square is zero.

0 1 0 1 T
A= produces f(x,y) = [m y] = 2xy. Ahas A = 1 and
1 0 1 0 Y

—1. Then A is an indefinite matrix and f(x,y) = 2xy has a saddle point.
2 3 3

1 2 6 5 o ) .
ATA = and ATA = are positive definite; ATA = [3 5 4] is
2 13 5 6
3 4 5

singular (and positive semidefinite). The first two A’s have independent columns. The

2 by 3 A cannot have full column rank 3, with only 2 rows; AT A is singular.

g 3 6 1 0 3 0 1 2 Pivots 3, 4 outside squares, ¢;; inside.
6 16 2 1|0 4| |0 1| TSz =3(x+2y)? +4y
(4 4 8]
has only one pivot = 4, rank S = 1,
S=|-4 4 -8
eigenvalues are 24,0,0,det S = 0.
8 —8 16
[ 2 -1 0] 2 1 -1 1 0
has pivots o
S=1-1 2 -1 5 4 T=1|-1 2 —1|issingula; T |1| =1]0].
27_7_;
0 -1 2 273 ~1 -1 2 1 0

Corner determinants |S1| = 2, |S2| = 6, |S5| = 30. The pivots are 2/1,6/2,30/6.

S is positive definite for ¢ > 1; determinants ¢,c? — 1, and (¢ — 1)%(c + 2) > 0.

T is never positive definite (determinants d — 4 and —4d + 12 are never both positive).
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13

14

15

16

17

18

19

20

21

22

23

24

1 5
S = is an example with a + ¢ > 2b but ac < b?, so not positive definite.
5 10
The eigenvalues of S~ are positive because they are 1/A(S). Also the entries of S~!

pass the determinant tests. And TS~ 1z = (S~1z)TS(S~1x) > 0 forall x # 0.

Since 27 Sz > 0 and ™ Tx > 0 we have 2T (S + T)xz = 7Sz + Tz > 0 for
all x # 0. Then S + T is a positive definite matrix. The second proof uses the test

S = AT A (independent columns in A): If S = AT A and T = BT B pass this test,

T|A
then S + 7T = {A B] also passes, and must be positive definite.
B
xSz is zero when (71,72, 73) = (0, 1,0) because of the zero on the diagonal. Actu-

ally T Sx goes negative for x = (1, —10,0) because the second pivot is negative.
If aj; were smaller than all \’s, S — a;;I would have all eigenvalues > 0 (positive
definite). But S — a;; I has a zero in the (j, j) position; impossible by Problem 16.
If Sz = Az then T Sz = A\zTx. If S is positive definite this leads to A = 2T Sz /x x >
0 (ratio of positive numbers). So positive energy = positive eigenvalues.
All cross terms are ac;racj = 0 because symmetric matrices have orthogonal eigenvec-
tors. So positive eigenvalues = positive energy.
(a) The determinant is positive; all A > 0  (b) All projection matrices except I are
singular  (c) The diagonal entries of D are its eigenvalues (d) S = —I has det =
+1 when n is even.
S is positive definite when s > 8; T' is positive definite when ¢ > 5 by determinants.

1 -1] |9 11

A— |1 1 ﬂ_11:21;A:Q40QT:31
V2 V2 1 2 0 2 1 3

2?/a? +y?/b? is T Sx when S = diag(1/a?,1/b%). Then A\; = 1/a? and \y = 1/b?
soa = 1/v/A1 and b = 1/4/A;. The ellipse 922 + 16y? = 1 has axes with half-lengths

a=1and b= 1. The points (%,0) and (0, 1) are at the ends of the axes.

The ellipse 22 + zy + 4> = 1 has axes with half-lengths 1/v/X = v/2 and /2/3.
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25

26

27

28

29

30

31

32

33

Solutions to Exercises
9 3 4 8 1 0 4 0 1 2
S=CTC = ; = and C' =
3 5 8 25 2 1 0 9 0 1 0 3
30 0] 11 1

T
The Cholesky factors C' = (L\/ﬁ) =10 1 2landC = |0 1 1 | have

0 0 2] 00 V5
square roots of the pivots from D. Note again CTC = LDLT = S.

Writingout ™ Sz = 2T LDL x gives az®+2bay+cy® = a(z+Ly)2+ %yz. So
the LDLT from elimination is exactly the same as completing the square. The example
222 +8zy+10y? = 2(z+2y)?+2y? with pivots 2, 2 outside the squares and multiplier

2 inside.

det S = (1)(10)(1) = 10; A = 2 and 5; &1 = (cosf,sin ), &z = (—sin b, cos §); the

A’s are positive. So S is positive definite.

622 2z | . ) ] ) )
S1 = is semidefinite; f1 = (32% + y)? = 0 on the curve 322 +y = 0;
2z 2
6z 1 0
Sy = = is indefinite at (0, 1) where first derivatives = 0. Then
1 0 10

x =0,y = 1is asaddle point of the function f5(x,y).

ax? + 2bzy + cy? has a saddle point if ac < b%. The matrix is indefinite (A < 0 and

A > 0) because the determinant ac — b? is negative.

If ¢ > 9 the graph of z is a bowl, if ¢ < 9 the graph has a saddle point. When ¢ = 9 the
graph of z = (2z + 3y)? is a “trough” staying at zero along the line 2z + 3y = 0.

Orthogonal matrices, exponentials e, matrices with det = 1 are groups. Examples
of subgroups are orthogonal matrices with det = 1, exponentials e“™ for integer n.

Another subgroup: lower triangular elimination matrices & with diagonal 1’s.

A product ST of symmetric positive definite matrices comes into many applications.

The “generalized” eigenvalue problem Ko = AMx has ST = M~ K. (Often we use
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34

35

36

37

eig( K, M) without actually inverting M.) All eigenvalues A are positive:

STx = \x gives (Tx) " STx = (Tx) " \z. Then A = 2T STz /=™ Tx > 0.

The five eigenvalues of K are 2 — 2(:05%7r =2-3,2-1,2,2+1,2+ 3.

The product of those eigenvalues is 6 = det K.

Put parentheses in T ATC Az = (Az)TC(Az). Since C is assumed positive definite,
this energy can drop to zero only when Ax = 0. Sine A is assumed to have independent
columns, Az = 0 only happens when = 0. Thus ATC A has positive energy and is

positive definite.

My textbooks Computational Science and Engineering and Introduction to Ap-
plied Mathematics start with many examples of ATC A in a wide range of applications.

I believe this is a unifying concept from linear algebra.

(a) The eigenvectors of A7 — S are Ay — A1, A1 — A2,..., A1 — A,. Those are > 0;

A1 — S is semidefinite.
(b) Semidefinite matrices have energy & (A I — S) x5 > 0. Then \yzTx > T Sx.

(c) Part (b) says zT Sz /xTx < )\, for all z. Equality at the eigenvector with Sz =

/\1$.
Energy 1Sz = a (1 +x2+23)%+c(z2—23)? > 0ifa > 0and ¢ > 0: semidefinite.

S has rank < 2 and determinant = 0; cannot be positive definite for any a and c.

Problem Set 6.6, page 360

1

2

B=GCG 1=GF1AFG—!so M=FG~!. C similarto A and B= A similarto B.

1 0. 3 0
A= is similar to B = = MYAM with M =

0 3 0 1 1 0
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10

11

Solutions to Exercises

10 10 1 0|1 O
B= = = M-1AM;
0 0 1 1 1 0 1 1
- ~1
1 -1 1 0 1 1 1 0
B = = )
-1 1 0 —1 1 1 0 —1
- -1
4 3 0 1 1 2 0 1
B = =
2 1 1 0 3 4 1 0
A has no repeated ) so it can be diagonalized: S~'AS = A makes A similar to A.

11 0 0 1 0 0 1 o )
, , , are similar (they all have eigenvalues 1 and 0).

0 0 11 10 01

10 0 1
is by itself and also is by itself with eigenvalues 1 and —1.
0 1 1 0

Egight families of similar matrices: six matrices have A = 0, 1 (one family); three
matrices have A = 1, 1 and three have A = 0, 0 (two families each!); onehas A = 1, —1;
one has A = 2, 0; two matrices have \ = %(1 + \/5) (they are in one family).

(@ (M—*AM)(M~'z) = M~'(Az) = M~'0 = 0  (b) The nullspaces of A

and of M~ AM have the same dimension. Different vectors and different bases.

Same A 0 1 0 2| have the same line of eigenvectors
ButA = and B =
Same S 0 0 0 O and the same eigenvalues A = 0, 0.
12 13 1k 10
A? = , A3 = , every AF = A0 = and A~! =
01 01 01 01
1 -1
0 1
2 2 b ekt ¢t —c?
J? = and J* = ;JO=Tand J ! =
0 ¢ 0 0 c !
5 v(0 d A1 d
u(0) = = ©) . The equation o uhas 20 = v + w and
2 w(0) 0 A dt
d
d—l: = Aw. Then w(t) = 2e* and v(t) must include 2te* (this comes from the
(

repeated \). To match v(0) = 5, the solution is v(t) = 2te + 5ert.
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M1 Mo Moz Moy 0 mi2 miz O
0 0 0 0 0 moy maoz O
12 f M1 JM =K then JM= = MK=
Ma1 M4z M43 My 0 mz2 maz 0
0 0 0 o0 0 ma maz O]

That means mg; = Moy = Moz = Moy = 0. M is not invertible, J not similar to K.

13 The five 4 by 4 Jordan forms with A = 0,0, 0,0 are .J; = zero matrix and

(0 1 0 0] [0 1 0 0]
000 0 0010
Jy = Js =
0000 0000
00 0 0] 00 0 0]
(0 1 0 0] (0 1 0 o]
0000 0010
J, = Js =
000 1 000 1
0 0 0 0] 00 0 0]

Problem 12 showed that J3 and Jy are not similar, even with the same rank. Every
matrix with all A = 0 is “nilpotent” (its nth power is A™ = zero matrix). You see
J* = 0 for these matrices. How many possible Jordan forms for n = 5 and all A = 0?

14 (1) Choose M; = reverse diagonal matrix to get M[lJiMi = M.} in each block
(2) My has those diagonal blocks M; to get My ' My = JT. (3) AT = (M~1HTJTMT
equals (M~)TMy ' TMMT = (MMoM™)~Y A(MMyMT™), and AT is similar to
A.

15 det(M 1AM — M) = det(M 1AM — M—*XIM). This is det(M (A — \I)M).

By the product rule, the determinants of M and M ~! cancel to leave det(A — \I).

a b d cl |b al . ¢ : .
16 is similar to ; is similar to . So two pairs of similar
c d b a d c a b
. Loy, - 0 1f .
matrices but is not similar to : different eigenvalues!

0 1 1 0
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17

18

19

20

21

Solutions to Exercises

(a) False: Diagonalize a nonsymmetric A = SAS~!. Then A is symmetric and similar

1 0 —1
(b) True: A singular matrix has A = 0. (c) False: and are simi-
-1 0 1 0

lar

(they have A = £1) (d) True: Adding I increases all eigenvalues by 1

AB = B~Y(BA)B so AB is similar to BA. If ABx = \x then BA(Bz) = \(Bzx).

Diagonal blocks 6 by 6, 4 by 4; AB has the same eigenvalues as BA plus 6 — 4 zeros.

@ A=M"1BM = A? = (M~'BM)(M~'BM) = M~'B2M. So A2 is similar
to B2. (b) A? equals (—A)? but A may not be similar to B = — A (it could be!).

3 1

(©) is diagonalizableto because \; # Ao, sothesematrices are similar.
0 4 0 4
3 1

(d) has only one eigenvector, so not diagonalizable (e) PAPT is similar
0 3

to A. i

J? has three 1’s down the second superdiagonal, and two independent eigenvectors for

0 1 0
.| s . 1
A = 0. Its 5 by 5 Jordan form is withJs = |0 0 1| andJy =
Jo 0 0
0 0 O

Note to professors: An interesting question: Which matrices A have (complex) square
roots R?> = A? If A is invertible, no problem. But any Jordan blocks for A = 0 must
have sizes n; > ng > ... > np > ni41 = 0 that come in pairs like 3 and 2 in this

example: ny = (ng or no+1) and n3 = (n4 or ng+1) and so on.
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a 0 0] [a 1 0]
A list of all 3 by 3 and 4 by 4 Jordan forms could be [0 & 0|, [0 a 0],
0 0 c] 0 0 b_
- _a 1 ]
a 1 0
(for any numbers a,b, c) a
0 a )
with 3,2,1 eigenvectors; diag(a,b,c,d) and b
0 0 a
L i c|
_a 1 | _a 1 ] —a 1 |
a a 1 a 1
, , with 4, 3, 2, 1 eigenvectors.
b 1 a a 1
i b_ i b_ i a|

22 If all roots are A = 0, this means that det(A — AI) must be just \™. The Cayley-
Hamilton Theorem in Problem 6.2.32 immediately says that A™ = zero matrix. The
key example is a single n by n Jordan block (with n — 1 ones above the diagonal):

Check directly that J" = zero matrix.

23 Certainly Q1 Ry is similar to R1Q; = Qfl(QlRl)Ql. Then A; = QR — csI is

similar to Ay = RQq — cs®1.

24 A could have eigenvalues A = 2 and \ = % (A could be diagonal). Then A~! has the

same two eigenvalues (and is similar to A).

Problem Set 6.7, page 371

T

01
—UnyT= _ -1 0 0] 2 -1
14 > U Us vy vy | T
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1 2
2 This A = is a 2 by 2 matrix of rank 1. Its row space has basis v1, its nullspace
3 6

has basis vs, its column space has basis w1, its left nullspace has basis us:

1|1 2
Row space — Nullspace

1
V5 |9 E_1

Col L Nany L8

olumn space —— , —

P V10 | 3 V10 | 1

3 If A has rank 1 then so does AT A. The only nonzero eigenvalue of AT A is its trace,
which is the sum of all a;. (Bach diagonal entry of AT A is the sum of a?; down one
column, so the trace is the sum down all columns.) Then o; = square root of this sum,

and o} = this sum of all a;.

21 3+5 3-+v5 ButAis
4 ATA = AAT = has eigenvalues 07 = i \/_, o3 = 2\/_.

1 1 2 indefinite
o1 = (]. + \/5)/2 = /\1(A), 09 = (\/5— ].)/2 = —/\Q(A); u; = vp but uy = —vs.

5 A proof that eigshow finds the SVD. When V; = (1,0), V5 = (0, 1) the demo finds
AV and AV, at some angle 6. A 90° turn by the mouse to V5, —V'; finds AV 5 and
— AV at the angle m — 6. Somewhere between, the constantly orthogonal v; and vo

must produce Avq and Avs at angle 7 /2. Those orthogonal directions give w1 and us.

1/vV2

2 1 1/v/2

6 AAT = has 0? = 3 withu; = and 03 = 1 with uy = .
1 2 1/v/2 —1/vV2

1 10 1/v6 1/V2

ATA =11 2 1|has of =3withvy = |2/\6 |, 05 = 1withv, = 0
0 1 1 1/v6 —1/V2

1/V3
0 V3 0 0 .
and vz = | —1/4/3|. Then =[u; ug] [v] v2 w3] .

01 1 0 1 0
1/V3
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The matrix A in Problem 6 had oy = /3 and 0o = 1 in 3. The smallest change to

rank 1 is to make o> = 0. In the factorization
A= UEVT = ulalfurlr + ’UJQO'Q’Ug

this change 05 — 0 will leave the closest rank—1 matrix as u; al'ulT. See Problem 14

for the general case of this problem.

The number o5 (A7) O max (A) is the same as oy (A) /T min (A). This is certainly >
1. Itequals 1 if all o’s are equal, and A = UX VT is a multiple of an orthogonal matrix.

The ratio omax /0 min i the important condition number of A studied in Section 9.2.

A =UVT since all o; = 1, which means that > = I.

A rank-1 matrix with Av = 12u would have u in its column space, so A = uw"

for some vector w. I intended (but didn’t say) that w is a multiple of the unit vector
v =1(1,1,1,1) in the problem. Then A = 12uv™ to get Av = 12u when v"v = 1.

If A has orthogonal columns wy, ..., w, of lengths oy,...,0,, then AT A will be

diagonal with entries 02,...,02. So the o’s are definitely the singular values of A
(as expected). The eigenvalues of that diagonal matrix AT A are the columns of I, so

V = I in the SVD. Then the u; are Av;/o; which is the unit vector w; /c;.

The SVD of this A with orthogonal columns is A = ULV = (AX~1)(2)(I).

Since AT = A we have 07 = \? and 02 = )\3. But )\, is negative, so o; = 3 and
oo = 2. The unit eigenvectors of A are the same u; = v, as for ATA = AA" and

us = —vo (notice the sign change because oo = — o, as in Problem 4).

Suppose the SVD of R is R = USVT. Then multiply by Q to get A = QR. So the
SVD of this A is (QU)XV'™. (Orthogonal Q times orthogonal U = orthogonal QU..)

The smallest change in A is to set its smallest singular value o4 to zero. See # 7.
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15 The singular values of A + I are not o; + 1. They come from eigenvalues of
(A+DT(A+1T).

16 This simulates the random walk used by Google on billions of sites to solve Ap = p.
It is like the power method of Section 9.3 except that it follows the links in one “walk”
where the vector p;, = A¥p, averages over all walks.

17 A = USVT = [cosines including u,] diag(sqrt(2 — v/2,2,2 + 1/2)) [sine matrix] .

AV = UZX says that differences of sines in V" are cosines in U times o’’s.

The SVD of the derivative on [0, 7] with f(0) = 0 has u = sinnz, 0 = n, v = cos nx!





