INTRODUCTION

LINEAR

 ALGEBRAFifth Edition

Gilbert Strang
Massachusetts Institute of Technology
math.mit.edu/linearalgebra
web.mit.edu/18.06
video lectures: ocw.mit.edu
math.mit.edu/~gs
www.wellesleycambridge.com email: linearalgebrabook@gmail.com

Wellesley - Cambridge Press
Box 812060
Wellesley, Massachusetts 02482

Problem Set 6.1, page 298

1 The eigenvalues are 1 and 0.5 for $A, 1$ and 0.25 for $A^{2}, 1$ and 0 for A^{∞}. Exchanging the rows of A changes the eigenvalues to 1 and -0.5 (the trace is now $0.2+0.3$). Singular matrices stay singular during elimination, so $\lambda=0$ does not change.
$2 A$ has $\lambda_{1}=-1$ and $\lambda_{2}=5$ with eigenvectors $x_{1}=(-2,1)$ and $x_{2}=(1,1)$. The matrix $A+I$ has the same eigenvectors, with eigenvalues increased by 1 to 0 and 6 . That zero eigenvalue correctly indicates that $A+I$ is singular.
$3 A$ has $\lambda_{1}=2$ and $\lambda_{2}=-1$ (check trace and determinant) with $\boldsymbol{x}_{1}=(1,1)$ and $\boldsymbol{x}_{2}=(2,-1) . A^{-1}$ has the same eigenvectors, with eigenvalues $1 / \lambda=\frac{1}{2}$ and -1.
$4 \operatorname{det}(A-\lambda I)=\lambda^{2}+\lambda-6=(\lambda+3)(\lambda-2)$. Then A has $\lambda_{1}=-3$ and $\lambda_{2}=2$ (check trace $=-1$ and determinant $=-6)$ with $\boldsymbol{x}_{1}=(3,-2)$ and $\boldsymbol{x}_{2}=(1,1) . A^{2}$ has the same eigenvectors as A, with eigenvalues $\lambda_{1}^{2}=9$ and $\lambda_{2}^{2}=4$.
$5 A$ and B have eigenvalues 1 and 3 (their diagonal entries: triangular matrices). $A+B$ has $\lambda^{2}+8 \lambda+15=0$ and $\lambda_{1}=3, \lambda_{2}=5$. Eigenvalues of $A+B$ are not equal to eigenvalues of A plus eigenvalues of B.
$6 A$ and B have $\lambda_{1}=1$ and $\lambda_{2}=1 . A B$ and $B A$ have $\lambda^{2}-4 \lambda+1$ and the quadratic formula gives $\lambda=2 \pm \sqrt{3}$. Eigenvalues of $A B$ are not equal to eigenvalues of A times eigenvalues of B. Eigenvalues of $A B$ and $B A$ are equal (this is proved at the end of Section 6.2).

7 The eigenvalues of U (on its diagonal) are the pivots of A. The eigenvalues of L (on its diagonal) are all 1's. The eigenvalues of A are not the same as the pivots.
8 (a) Multiply $A \boldsymbol{x}$ to see $\lambda \boldsymbol{x}$ which reveals λ
(b) Solve $(A-\lambda I) \boldsymbol{x}=\mathbf{0}$ to find \boldsymbol{x}.

9 (a) Multiply by A : $A(A \boldsymbol{x})=A(\lambda \boldsymbol{x})=\lambda A \boldsymbol{x}$ gives $A^{2} \boldsymbol{x}=\boldsymbol{\lambda}^{2} \boldsymbol{x}$
(b) Multiply by $A^{-1}: \boldsymbol{x}=A^{-1} A \boldsymbol{x}=A^{-1} \lambda \boldsymbol{x}=\lambda A^{-1} \boldsymbol{x}$ gives $A^{-1} \boldsymbol{x}=\frac{1}{\lambda} \boldsymbol{x}$
(c) Add $I \boldsymbol{x}=\boldsymbol{x}:(A+I) \boldsymbol{x}=(\boldsymbol{\lambda}+\mathbf{1}) \boldsymbol{x}$.
$10 \operatorname{det}(A-\lambda I)=d^{2}-1.4 \lambda+0.4$ so A has $\lambda_{1}=1$ and $\lambda_{2}=0.4$ with $\boldsymbol{x}_{1}=(1,2)$ and $\boldsymbol{x}_{2}=(1,-1) . A^{\infty}$ has $\lambda_{1}=1$ and $\lambda_{2}=0$ (same eigenvectors). A^{100} has $\lambda_{1}=1$ and $\lambda_{2}=(0.4)^{100}$ which is near zero. So A^{100} is very near A^{∞} : same eigenvectors and close eigenvalues.

11 Columns of $A-\lambda_{1} I$ are in the nullspace of $A-\lambda_{2} I$ because $M=\left(A-\lambda_{2} I\right)\left(A-\lambda_{1} I\right)$ is the zero matrix [this is the Cayley-Hamilton Theorem in Problem 6.2.30]. Notice that M has zero eigenvalues $\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{1}-\lambda_{1}\right)=0$ and $\left(\lambda_{2}-\lambda_{2}\right)\left(\lambda_{2}-\lambda_{1}\right)=0$. So those columns solve $\left(A-\lambda_{2} I\right) \boldsymbol{x}=\mathbf{0}$, they are eigenvectors.

12 The projection matrix P has $\lambda=1,0,1$ with eigenvectors $(1,2,0),(2,-1,0),(0,0,1)$. Add the first and last vectors: $(1,2,1)$ also has $\lambda=1$. The whole column space of P contains eigenvectors with $\lambda=1$! Note $P^{2}=P$ leads to $\lambda^{2}=\lambda$ so $\lambda=0$ or 1 .

13 (a) $P \boldsymbol{u}=\left(\boldsymbol{u} \boldsymbol{u}^{\mathrm{T}}\right) \boldsymbol{u}=\boldsymbol{u}\left(\boldsymbol{u}^{\mathrm{T}} \boldsymbol{u}\right)=\boldsymbol{u}$ so $\lambda=1 \quad$ (b) $P \boldsymbol{v}=\left(\boldsymbol{u} \boldsymbol{u}^{\mathrm{T}}\right) \boldsymbol{v}=\boldsymbol{u}\left(\boldsymbol{u}^{\mathrm{T}} \boldsymbol{v}\right)=\mathbf{0}$
(c) $\boldsymbol{x}_{1}=(-1,1,0,0), \boldsymbol{x}_{2}=(-3,0,1,0), \boldsymbol{x}_{3}=(-5,0,0,1)$ all have $P \boldsymbol{x}=0 \boldsymbol{x}=\mathbf{0}$.
$14 \operatorname{det}(Q-\lambda I)=\lambda^{2}-2 \lambda \cos \theta+1=0$ when $\lambda=\cos \theta \pm i \sin \theta=e^{i \theta}$ and $e^{-i \theta}$. Check that $\lambda_{1} \lambda_{2}=1$ and $\lambda_{1}+\lambda_{2}=2 \cos \theta$. Two eigenvectors of this rotation matrix are $\boldsymbol{x}_{1}=(1, i)$ and $\boldsymbol{x}_{2}=(1,-i)$ (more generally $c \boldsymbol{x}_{1}$ and $d \boldsymbol{x}_{2}$ with $c d \neq 0$).

15 The other two eigenvalues are $\lambda=\frac{1}{2}(-1 \pm i \sqrt{3})$. The three eigenvalues are $1,1,-1$.
16 Set $\lambda=0$ in $\operatorname{det}(A-\lambda I)=\left(\lambda_{1}-\lambda\right) \ldots\left(\lambda_{n}-\lambda\right)$ to find $\operatorname{det} A=\left(\lambda_{1}\right)\left(\lambda_{2}\right) \cdots\left(\lambda_{n}\right)$.
$17 \lambda_{1}=\frac{1}{2}\left(a+d+\sqrt{(a-d)^{2}+4 b c}\right)$ and $\lambda_{2}=\frac{1}{2}(a+d-\sqrt{ })$ add to $a+d$. If A has $\lambda_{1}=3$ and $\lambda_{2}=4$ then $\operatorname{det}(A-\lambda I)=(\lambda-3)(\lambda-4)=\lambda^{2}-7 \lambda+12$.
18 These 3 matrices have $\lambda=4$ and 5, trace 9, $\operatorname{det} 20:\left[\begin{array}{ll}4 & 0 \\ 0 & 5\end{array}\right],\left[\begin{array}{rr}3 & 2 \\ -1 & 6\end{array}\right],\left[\begin{array}{rr}2 & 2 \\ -3 & 7\end{array}\right]$.
19 (a) rank $=2$
(b) $\operatorname{det}\left(B^{\mathrm{T}} B\right)=0$
(d) eigenvalues of $\left(B^{2}+I\right)^{-1}$ are $1, \frac{1}{2}, \frac{1}{5}$.
$20 A=\left[\begin{array}{rr}0 & 1 \\ -\mathbf{2 8} & \mathbf{1 1}\end{array}\right]$ has trace 11 and determinant 28 , so $\lambda=4$ and 7 . Moving to a 3 by 3 companion matrix, for eigenvalues $1,2,3$ we want $\operatorname{det}(C-\lambda I)=(1-\lambda)(2-\lambda)$ $(3-\lambda)$. Multiply out to get $-\lambda^{3}+6 \lambda^{2}-11 \lambda+6$. To get those numbers $6,-11,6$ from a companion matrix you just put them into the last row:
$C=\left[\begin{array}{rrr}0 & 1 & 0 \\ 0 & 0 & 1 \\ \mathbf{6} & -\mathbf{1 1} & \mathbf{6}\end{array}\right]$ Notice the trace $6=1+2+3$ and determinant $6=(1)(2)(3)$.
$21(A-\lambda I)$ has the same determinant as $(A-\lambda I)^{\mathrm{T}}$ because every square matrix has $\operatorname{det} M=\operatorname{det} M^{\mathrm{T}}$. Pick $M=A-\lambda I$.

$$
\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right] \text { and }\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \begin{aligned}
& \text { have different } \\
& \text { eigenvectors. }
\end{aligned}
$$

22 The eigenvalues must be $\lambda=\mathbf{1}$ (because the matrix is Markov), $\mathbf{0}$ (for singular), $-\frac{1}{2}$ (so sum of eigenvalues $=$ trace $=\frac{1}{2}$).
$23\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}-1 & 1 \\ -1 & 1\end{array}\right] . \begin{aligned} & \text { Always } A^{2} \text { is the zero matrix if } \lambda=0 \text { and } 0, \\ & \text { by the Cayley-Hamilton Theorem in Problem 6.2.30. }\end{aligned}$ $24 \lambda=\mathbf{0}, \mathbf{0}, \mathbf{6}$ (notice rank 1 and trace 6). Two eigenvectors of $\boldsymbol{u} \boldsymbol{v}^{\mathrm{T}}$ are perpendicular to \boldsymbol{v} and the third eigenvector is $\boldsymbol{u}: \boldsymbol{x}_{1}=(0,-2,1), \boldsymbol{x}_{2}=(1,-2,0), \boldsymbol{x}_{3}=(1,2,1)$.

25 When A and B have the same $n \lambda$'s and \boldsymbol{x} 's, look at any combination $\boldsymbol{v}=c_{1} \boldsymbol{x}_{1}+$ $\cdots+c_{n} \boldsymbol{x}_{n}$. Multiply by A and $B: A \boldsymbol{v}=c_{1} \lambda_{1} \boldsymbol{x}_{1}+\cdots+c_{n} \lambda_{n} \boldsymbol{x}_{n}$ equals $B \boldsymbol{v}=$ $c_{1} \lambda_{1} \boldsymbol{x}_{1}+\cdots+c_{n} \lambda_{n} \boldsymbol{x}_{n}$ for all vectors \boldsymbol{v}. So $A=B$.

26 The block matrix has $\lambda=1,2$ from B and $\lambda=5,7$ from D. All entries of C are multiplied by zeros in $\operatorname{det}(A-\lambda I)$, so C has no effect on the eigenvalues of the block matrix.
$27 A$ has rank 1 with eigenvalues $0,0,0,4$ (the 4 comes from the trace of A). C has rank 2 (ensuring two zero eigenvalues) and $(1,1,1,1)$ is an eigenvector with $\lambda=2$. With trace 4 , the other eigenvalue is also $\lambda=2$, and its eigenvector is $(1,-1,1,-1)$.

28 Subtract from $0,0,0,4$ in Problem 27. $B=A-I$ has $\lambda=-1,-1,-1,3$ and $C=I-A$ has $\lambda=1,1,1,-3$. Both have $\operatorname{det}=-3$.
$29 A$ is triangular : $\lambda(A)=1,4,6 ; \lambda(B)=2, \sqrt{3},-\sqrt{3} ; C$ has rank one : $\lambda(C)=0,0,6$.

31 Eigenvector $(1,3,4)$ for A with $\lambda=11$ and eigenvector $(3,1,4)$ for $P A P^{\mathrm{T}}$ with $\lambda=11$. Eigenvectors with $\lambda \neq 0$ must be in the column space since $A \boldsymbol{x}$ is always in the column space, and $\boldsymbol{x}=A \boldsymbol{x} / \lambda$.

32 (a) \boldsymbol{u} is a basis for the nullspace (we know $A \boldsymbol{u}=0 \boldsymbol{u}$); \boldsymbol{v} and \boldsymbol{w} give a basis for the column space (we know $A \boldsymbol{v}$ and $A \boldsymbol{w}$ are in the column space).
(b) $A(\boldsymbol{v} / 3+\boldsymbol{w} / 5)=3 \boldsymbol{v} / 3+5 \boldsymbol{w} / 5=\boldsymbol{v}+\boldsymbol{w}$. So $\boldsymbol{x}=\boldsymbol{v} / 3+\boldsymbol{w} / 5$ is a particular solution to $A \boldsymbol{x}=\boldsymbol{v}+\boldsymbol{w}$. Add any $c \boldsymbol{u}$ from the nullspace
(c) If $A \boldsymbol{x}=\boldsymbol{u}$ had a solution, \boldsymbol{u} would be in the column space: wrong dimension 3 .

33 Always $\left(\boldsymbol{u} \boldsymbol{v}^{\mathrm{T}}\right) \boldsymbol{u}=\boldsymbol{u}\left(\boldsymbol{v}^{\mathrm{T}} \boldsymbol{u}\right)$ so \boldsymbol{u} is an eigenvector of $\boldsymbol{u} \boldsymbol{v}^{\mathrm{T}}$ with $\lambda=\boldsymbol{v}^{\mathrm{T}} \boldsymbol{u}$. (watch numbers $\boldsymbol{v}^{\mathrm{T}} \boldsymbol{u}$, vectors \boldsymbol{u}, matrices $\boldsymbol{u} \boldsymbol{v}^{\mathrm{T}}!!$) If $\boldsymbol{v}^{\mathrm{T}} \boldsymbol{u}=0$ then $A^{2}=\boldsymbol{u}\left(\boldsymbol{v}^{\mathrm{T}} \boldsymbol{u}\right) \boldsymbol{v}^{\mathrm{T}}$ is the zero matrix and $\lambda^{2}=0,0$ and $\lambda=0,0$ and trace $(A)=0$. This zero trace also comes from adding the diagonal entries of $A=\boldsymbol{u} \boldsymbol{v}^{\mathrm{T}}$:

$$
A=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]=\left[\begin{array}{ll}
u_{1} v_{1} & u_{1} v_{2} \\
u_{2} v_{1} & u_{2} v_{2}
\end{array}\right] \quad \text { has trace } u_{1} v_{1}+u_{2} v_{2}=\boldsymbol{v}^{\mathrm{T}} \boldsymbol{u}=0
$$

$34 \operatorname{det}(P-\lambda I)=0$ gives the equation $\lambda^{4}=1$. This reflects the fact that $P^{4}=I$. The solutions of $\lambda^{4}=1$ are $\lambda=1, i,-1,-i$. The real eigenvector $\boldsymbol{x}_{1}=(1,1,1,1)$ is not changed by the permutation P. Three more eigenvectors are $\left(1, i, i^{2}, i^{3}\right)$ and $(1,-1,1,-1)$ and $\left(1,-i,(-i)^{2},(-i)^{3}\right)$.
35 The six 3 by 3 permutation matrices include $P=I$ and three single row exchange matrices P_{12}, P_{13}, P_{23} and two double exchange matrices like $P_{12} P_{13}$. Since $P^{\mathrm{T}} P=I$ gives $(\operatorname{det} P)^{2}=1$, the determinant of P is 1 or -1 . The pivots are always 1 (but there may be row exchanges). The trace of P can be 3 (for $P=I$) or 1 (for row exchange) or 0 (for double exchange). The possible eigenvalues are 1 and -1 and $e^{2 \pi i / 3}$ and $e^{-2 \pi i / 3}$.
$36 A B-B A=I$ can happen only for infinite matrices. If $A^{\mathrm{T}}=A$ and $B^{\mathrm{T}}=-B$ then

$$
\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}=\boldsymbol{x}^{\mathrm{T}}(A B-B A) \boldsymbol{x}=\boldsymbol{x}^{\mathrm{T}}\left(A^{\mathrm{T}} B+B^{\mathrm{T}} A\right) \boldsymbol{x} \leq\|A \boldsymbol{x}\|\|B \boldsymbol{x}\|+\|B \boldsymbol{x}\|\|A \boldsymbol{x}\| .
$$

Therefore $\|A \boldsymbol{x}\|\|B \boldsymbol{x}\| \geq \frac{1}{2}\|\boldsymbol{x}\|^{2}$ and $(\|A \boldsymbol{x}\| /\|\boldsymbol{x}\|)(\|B \boldsymbol{x}\| /\|\boldsymbol{x}\|) \geq \frac{1}{2}$.
$37 \lambda_{1}=e^{2 \pi i / 3}$ and $\lambda_{2}=e^{-2 \pi i / 3}$ give $\operatorname{det} \lambda_{1} \lambda_{2}=1$ and trace $\lambda_{1}+\lambda_{2}=-1$. $A=\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ with $\theta=\frac{2 \pi}{3}$ has this trace and det. So does every $M^{-1} A M!$
38 (a) Since the columns of A add to 1 , one eigenvalue is $\lambda=1$ and the other is $c-0.6$ (to give the correct trace $c+0.4$).
(b) If $c=1.6$ then both eigenvalues are 1 , and all solutions to $(A-I) \boldsymbol{x}=\mathbf{0}$ are multiples of $\boldsymbol{x}=(1,-1)$. In this case A has rank 1 .
(c) If $c=0.8$, the eigenvectors for $\lambda=1$ are multiples of $(1,3)$. Since all powers A^{n} also have column sums $=1, A^{n}$ will approach $\frac{1}{4}\left[\begin{array}{ll}1 & 1 \\ 3 & 3\end{array}\right]=$ rank-1 matrix A^{∞} with eigenvalues 1,0 and correct eigenvectors. $(1,3)$ and $(1,-1)$.

Problem Set 6.2, page 314

1 Eigenvectors in \boldsymbol{X} and eigenvalues in Λ. Then $A=X \Lambda X^{-1}$ is $\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]\left[\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right]$.
The second matrix has $\lambda=0($ rank 1$)$ and $\lambda=4$ (trace $=4)$. Then $A=X \Lambda X^{-1}$ is $\left[\begin{array}{ll}1 & 1 \\ 3 & 3\end{array}\right]=\left[\begin{array}{rr}1 & 1 \\ -1 & 3\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 0 & 4\end{array}\right]\left[\begin{array}{rr}\frac{3}{4} & -\frac{1}{4} \\ \frac{1}{4} & \frac{1}{4}\end{array}\right]$.
$2 \begin{gathered}\text { Put the eigenvectors in } X \\ \text { and eigenvalues } 2,5 \text { in } \Lambda \text {. }\end{gathered} \quad A=X \Lambda X^{-1}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 0 & 5\end{array}\right]\left[\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}2 & 3 \\ 0 & 5\end{array}\right]$.
3 If $A=X \Lambda X^{-1}$ then the eigenvalue matrix for $A+2 I$ is $\Lambda+2 I$ and the eigenvector matrix is still X. So $A+2 I=S(\Lambda+2 I) X^{-1}=X \Lambda X^{-1}+X(2 I) X^{-1}=A+2 I$.
4 (a) False: We are not given the λ 's
(b) True
(c) True
(d) False: For this we would need the eigenvectors of X

5 With $X=I, A=X \Lambda X^{-1}=\Lambda$ is a diagonal matrix. If X is triangular, then X^{-1} is triangular, so $X \Lambda X^{-1}$ is also triangular.

6 The columns of S are nonzero multiples of $(2,1)$ and $(0,1)$: either order. The same eigenvector matrices diagonalize A and A^{-1}.
$7 A=X \Lambda X^{-1}=\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{ll}\lambda_{1} & \\ & \lambda_{2}\end{array}\right]\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right] / 2=\left[\begin{array}{ll}\lambda_{1}+\lambda_{2} & \lambda_{1}-\lambda_{2} \\ \lambda_{1}-\lambda_{2} & \lambda_{1}+\lambda_{2}\end{array}\right] / 2$. These are the matrices $\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]$, their eigenvectors are $(1,1)$ and $(1,-1)$.
$8 A=X \Lambda X^{-1}=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]=\frac{1}{\lambda_{1}-\lambda_{2}}\left[\begin{array}{cc}\lambda_{1} & \lambda_{2} \\ 1 & 1\end{array}\right]\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]\left[\begin{array}{rr}1 & -\lambda_{2} \\ -1 & \lambda_{1}\end{array}\right]$. $X \Lambda^{k} X^{-1}=\frac{1}{\lambda_{1}-\lambda_{2}}\left[\begin{array}{cc}\lambda_{1} & \lambda_{2} \\ 1 & 1\end{array}\right]\left[\begin{array}{cc}\lambda_{1}^{k} & 0 \\ 0 & \lambda_{2}^{k}\end{array}\right]\left[\begin{array}{rr}1 & -\lambda_{2} \\ -1 & \lambda_{1}\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
The second component is $F_{k}=\left(\lambda_{1}^{k}-\lambda_{2}^{k}\right) /\left(\lambda_{1}-\lambda_{2}\right)$.
9 (a) The equations are $\left[\begin{array}{l}G_{k+2} \\ G_{k+1}\end{array}\right]=A\left[\begin{array}{l}G_{k+1} \\ G_{k}\end{array}\right]$ with $A=\left[\begin{array}{cc}.5 & .5 \\ 1 & 0\end{array}\right]$. This matrix has $\lambda_{1}=1, \lambda_{2}=-\frac{1}{2}$ with $\boldsymbol{x}_{1}=(1,1), \boldsymbol{x}_{2}=(1,-2)$
(b) $A^{n}=X \Lambda^{n} X^{-1}=\left[\begin{array}{cc}1 & 1 \\ 1 & -2\end{array}\right]\left[\begin{array}{cc}1^{n} & 0 \\ 0 & (-.5)^{n}\end{array}\right]\left[\begin{array}{cc}\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3}\end{array}\right] \rightarrow A^{\infty}=\left[\begin{array}{cc}\frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3}\end{array}\right]$

10 The rule $F_{k+2}=F_{k+1}+F_{k}$ produces the pattern: even, odd, odd, even, odd, odd, \ldots
11 (a) True (no zero eigenvalues) (b) False (repeated $\lambda=2$ may have only one line of eigenvectors) (c) False (repeated λ may have a full set of eigenvectors)

12 (a) False: don't know if $\lambda=0$ or not.
(b) True: an eigenvector is missing, which can only happen for a repeated eigenvalue.
(c) True: We know there is only one line of eigenvectors.
$13 A=\left[\begin{array}{rr}8 & 3 \\ -3 & 2\end{array}\right]$ (or other), $A=\left[\begin{array}{rr}9 & 4 \\ -4 & 1\end{array}\right], A=\left[\begin{array}{rl}10 & 5 \\ -5 & 0\end{array}\right] ; \quad \begin{aligned} & \text { only eigenvectors } \\ & \text { are } \boldsymbol{x}=(c,-c) .\end{aligned}$
14 The rank of $A-3 I$ is $r=1$. Changing any entry except $a_{12}=1$ makes A diagonalizable (the new A will have two different eigenvalues)
$15 A^{k}=X \Lambda^{k} X^{-1}$ approaches zero if and only if every $|\boldsymbol{\lambda}|<1 ; A_{1}$ is a Markov matrix so $\lambda_{\max }=1$ and $A_{1}^{k} \rightarrow A_{1}^{\infty}, A_{2}$ has $\lambda=.6 \pm .3$ so $A_{2}^{k} \rightarrow 0$.
$16 A_{1}$ is $X \Lambda X^{-1}$ with $\Lambda=\left[\begin{array}{rr}1 & 0 \\ 0 & .2\end{array}\right]$ and $X=\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right] ; \Lambda^{k} \rightarrow\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$. Then $A_{1} k=X \Lambda^{k} X^{-1} \rightarrow\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right]:$ steady state.
$17 A_{2}$ is $X \Lambda X^{-1}$ with $\Lambda=\left[\begin{array}{rr}.9 & 0 \\ 0 & .3\end{array}\right]$ and $X=\left[\begin{array}{rr}3 & -3 \\ 1 & 1\end{array}\right] ; A_{2}^{10}\left[\begin{array}{l}3 \\ 1\end{array}\right]=(.9)^{10}\left[\begin{array}{l}3 \\ 1\end{array}\right]$. $A_{2}^{10}\left[\begin{array}{r}3 \\ -1\end{array}\right]=(.3)^{10}\left[\begin{array}{r}3 \\ -1\end{array}\right]$. Then $A_{2}^{10}\left[\begin{array}{l}6 \\ 0\end{array}\right]=(.9)^{10}\left[\begin{array}{l}3 \\ 1\end{array}\right]+(.3)^{10}\left[\begin{array}{r}3 \\ -1\end{array}\right]$ because $\left[\begin{array}{l}6 \\ 0\end{array}\right]$ is the sum of $\left[\begin{array}{l}3 \\ 1\end{array}\right]+\left[\begin{array}{r}3 \\ -1\end{array}\right]$.
$18\left[\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right]=X \Lambda X^{-1}=\frac{1}{2}\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]\left[\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right]$ and
$A^{k}=X \Lambda^{k} X^{-1}=\frac{1}{2}\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right]\left[\begin{array}{rr}1 & 0 \\ 0 & 3^{k}\end{array}\right]\left[\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right]$.
Multiply those last three matrices to get $A^{k}=\frac{1}{2}\left[\begin{array}{ll}1+3^{k} & 1-3^{k} \\ 1-3^{k} & 1+3^{k}\end{array}\right]$.
$19 B^{k}=X \Lambda^{k} X^{-1}=\left[\begin{array}{rr}1 & 1 \\ 0 & -1\end{array}\right]\left[\begin{array}{ll}5 & 0 \\ 0 & 4\end{array}\right]^{k}\left[\begin{array}{rr}1 & 1 \\ 0 & -1\end{array}\right]=\left[\begin{array}{cc}5^{k} & 5^{k}-4^{k} \\ 0 & 4^{k}\end{array}\right]$.
$20 \operatorname{det} A=(\operatorname{det} X)(\operatorname{det} \Lambda)\left(\operatorname{det} X^{-1}\right)=\operatorname{det} \Lambda=\lambda_{1} \cdots \lambda_{n}$. This proof (det $=$ product of λ 's) works when A is diagonalizable. The formula is always true.

21 trace $X Y=(a q+b s)+(c r+d t)$ is equal to $(q a+r c)+(s b+t d)=$ trace $Y X$. Diagonalizable case: the trace of $X \Lambda X^{-1}=$ trace of $\left(\Lambda X^{-1}\right) X=\Lambda$: sum of the λ 's.
$22 A B-B A=I$ is impossible since trace $A B-\operatorname{trace} B A=$ zero \neq trace I. $A B-B A=C$ is possible when trace $(C)=0$. For example $E=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ has $E E^{\mathrm{T}}-E^{\mathrm{T}} E=\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right]=C$ with trace zero.
23 If $A=X \Lambda X^{-1}$ then $B=\left[\begin{array}{cc}A & 0 \\ 0 & 2 A\end{array}\right]=\left[\begin{array}{cc}X & 0 \\ 0 & X\end{array}\right]\left[\begin{array}{cc}\Lambda & 0 \\ 0 & 2 \Lambda\end{array}\right]\left[\begin{array}{cc}X^{-1} & 0 \\ 0 & X^{-1}\end{array}\right]$. So B has the original λ 's from A and the additional eigenvalues $2 \lambda_{1}, \ldots, 2 \lambda_{n}$ from $2 A$.

24 The A 's form a subspace since $c A$ and $A_{1}+A_{2}$ all have the same X. When $X=I$ the A 's with those eigenvectors give the subspace of diagonal matrices. The dimension of that matrix space is 4 since the matrices are 4 by 4 .

25 If A has columns $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}$ then column by column, $A^{2}=A$ means every $A \boldsymbol{x}_{i}=\boldsymbol{x}_{i}$. All vectors in the column space (combinations of those columns \boldsymbol{x}_{i}) are eigenvectors with $\lambda=1$. Always the nullspace has $\lambda=0$ (A might have dependent columns, so there could be less than n eigenvectors with $\lambda=1$). Dimensions of those spaces $\boldsymbol{C}(A)$ and $\boldsymbol{N}(A)$ add to n by the Fundamental Theorem, so A is diagonalizable (n independent eigenvectors altogether).

26 Two problems: The nullspace and column space can overlap, so \boldsymbol{x} could be in both. There may not be r independent eigenvectors in the column space.
$27 R=X \sqrt{\Lambda} X^{-1}=\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{ll}3 & \\ & 1\end{array}\right]\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right] / 2=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$ has $R^{2}=A$.
\sqrt{B} needs $\lambda=\sqrt{9}$ and $\sqrt{-1}$, trace (their sum) is not real so \sqrt{B} cannot be real. Note that $\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]$ has two imaginary eigenvalues $\sqrt{-1}=i$ and $-i$, real trace 0 , real square root $\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]$.
28 The factorizations of A and B into $X \Lambda X^{-1}$ are the same. So $A=B$. (This is the same as Problem 6.1.25, expressed in matrix form.)
$29 A=X \Lambda_{1} X^{-1}$ and $B=X \Lambda_{2} X^{-1}$. Diagonal matrices always give $\Lambda_{1} \Lambda_{2}=\Lambda_{2} \Lambda_{1}$. Then $A B=B A$ from

$$
X \Lambda_{1} X^{-1} X \Lambda_{2} X^{-1}=X \boldsymbol{\Lambda}_{\mathbf{1}} \mathbf{\Lambda}_{\mathbf{2}} X^{-1}=X \mathbf{\Lambda}_{\mathbf{2}} \mathbf{\Lambda}_{\mathbf{1}} X^{-1}=X \Lambda_{2} X^{-1} X \Lambda_{1} X^{-1}=B A
$$

30 (a) $A=\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right]$ has $\lambda=a$ and $\lambda=d:(A-a I)(A-d I)=\left[\begin{array}{cc}0 & b \\ 0 & d-a\end{array}\right]\left[\begin{array}{cc}a-d & b \\ 0 & 0\end{array}\right]$ $=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] . \quad$ (b) $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ has $A^{2}=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$ and $A^{2}-A-I=0$ is true, matching $\lambda^{2}-\lambda-1=0$ as the Cayley-Hamilton Theorem predicts.

31 When $A=X \Lambda X^{-1}$ is diagonalizable, the matrix $A-\lambda_{j} I=X\left(\Lambda-\lambda_{j} I\right) X^{-1}$ will have 0 in the j, j diagonal entry of $\Lambda-\lambda_{j} I$. The product $p(A)$ becomes

$$
p(A)=\left(A-\lambda_{1} I\right) \cdots\left(A-\lambda_{n} I\right)=X\left(\Lambda-\lambda_{1} I\right) \cdots\left(\Lambda-\lambda_{n} I\right) X^{-1}
$$

That product is the zero matrix because the factors produce a zero in each diagonal position. Then $p(A)=$ zero matrix, which is the Cayley-Hamilton Theorem. (If A is not diagonalizable, one proof is to take a sequence of diagonalizable matrices approaching A.)

Comment I have also seen the following Cayley-Hamilton proof but I am not convinced:

Apply the formula $A C^{\mathrm{T}}=(\operatorname{det} A) I$ from Section 5.3 to $A-\lambda I$ with variable λ. Its cofactor matrix C will be a polynomial in λ, since cofactors are determinants:

$$
(A-\lambda I) C^{\mathrm{T}}=\operatorname{det}(A-\lambda I) I=p(\lambda) I
$$

"For fixed A, this is an identity between two matrix polynomials." Set $\lambda=A$ to find the zero matrix on the left, so $p(A)=$ zero matrix on the right-which is the CayleyHamilton Theorem.

I am not certain about the key step of substituting a matrix for λ. If other matrices B are substituted for λ, does the identity remain true? If $A B \neq B A$, even the order of multiplication seems unclear ...

32 If $A B=B A$, then B has the same eigenvectors $(1,0)$ and $(0,1)$ as A. So B is also diagonal $b=c=0$. The nullspace for the following equation is 2-dimensional: $A B-B A=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]-\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]=\left[\begin{array}{rr}\mathbf{0} & -\boldsymbol{b} \\ \boldsymbol{c} & \mathbf{0}\end{array}\right]=\left[\begin{array}{ll}\mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}\end{array}\right]$. Those 4 equations $0=0,-b=0, c=0,0=0$ have a 4 by 4 coefficient matrix with rank $4-2=2$.
$33 B$ has $\lambda=i$ and $-i$, so B^{4} has $\lambda^{4}=1$ and 1 and $B^{1024}=I$.
C has $\lambda=(1 \pm \sqrt{3} i) / 2$. This λ is $\exp (\pm \pi i / 3)$ so $\lambda^{3}=-1$ and -1 . Then $C^{3}=-I$ which leads to $C^{1024}=(-I)^{341} C=-C$.

34 The eigenvalues of $A=\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ are $\lambda=e^{i \theta}$ and $e^{-i \theta}$ (trace $2 \cos \theta$ and determinant $=1)$. Their eigenvectors are $(1,-i)$ and $(1, i)$:

$$
\begin{aligned}
A^{n} & =X \Lambda^{n} X^{-1}=\left[\begin{array}{rr}
1 & 1 \\
-i & i
\end{array}\right]\left[\begin{array}{ll}
e^{i n \theta} & \\
& e^{-i n \theta}
\end{array}\right]\left[\begin{array}{lr}
i & -1 \\
i & 1
\end{array}\right] / 2 i \\
& =\left[\begin{array}{cc}
\left(e^{i n \theta}+e^{-i n \theta}\right) / 2 & \cdots \\
\left(e^{i n \theta}-e^{-i n \theta}\right) / 2 i & \cdots
\end{array}\right]=\left[\begin{array}{lr}
\cos n \theta & -\sin n \theta \\
\sin n \theta & \cos n \theta
\end{array}\right]
\end{aligned}
$$

Geometrically, n rotations by θ give one rotation by $n \theta$.

35 Columns of X times rows of ΛX^{-1} gives a sum of r rank- 1 matrices $(r=$ rank of $A)$.

36 Multiply ones $(n) * \operatorname{ones}(n)=n * \operatorname{ones}(n)$. This leads to $C=-1 /(n+1)$.

$$
\begin{aligned}
A A^{-1} & =(\operatorname{eye}(n)+\operatorname{ones}(n)) *(\operatorname{eye}(n)+C * \operatorname{ones}(n)) \\
& =\operatorname{eye}(n)+(1+C+C n) * \operatorname{ones}(n)=\operatorname{eye}(n)
\end{aligned}
$$

Problem Set 6.3, page 332

1 Eigenvalues 4 and 1 with eigenvectors $(1,0)$ and $(1,-1)$ give solutions $\boldsymbol{u}_{1}=e^{4 t}\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\boldsymbol{u}_{2}=e^{t}\left[\begin{array}{r}1 \\ -1\end{array}\right]$. If $\boldsymbol{u}(0)=\left[\begin{array}{r}5 \\ -2\end{array}\right]=3\left[\begin{array}{l}1 \\ 0\end{array}\right]+2\left[\begin{array}{r}1 \\ -1\end{array}\right]$, then $\boldsymbol{u}(t)=3 e^{4 t}\left[\begin{array}{l}1 \\ 0\end{array}\right]+2 e^{t}\left[\begin{array}{r}1 \\ -1\end{array}\right]$.
$2 z(t)=2 e^{t}$ solves $d x / d t=z$ with $z(0)=2$. Then $d y / d t=4 y-6 e^{t}$ with $y(0)=5$ gives $y(t)=3 e^{4 t}+2 e^{t}$ as in Problem 1 .

3 (a) If every column of A adds to zero, this means that the rows add to the zero row. So the rows are dependent, and A is singular, and $\lambda=0$ is an eigenvalue.
(b) The eigenvalues of $A=\left[\begin{array}{rr}-2 & 3 \\ 2 & -3\end{array}\right]$ are $\lambda_{1}=0$ with eigenvector $\boldsymbol{x}_{1}=(3,2)$ and $\lambda_{2}=-5$ (to give trace $=-5$) with $\boldsymbol{x}_{2}=(1,-1)$. Then the usual 3 steps:

1. Write $u(0)=\left[\begin{array}{l}4 \\ 1\end{array}\right]$ as $\left[\begin{array}{l}3 \\ 2\end{array}\right]+\left[\begin{array}{r}1 \\ -1\end{array}\right]=\boldsymbol{x}_{1}+\boldsymbol{x}_{2}=$ combination of eigenvectors
2. The solutions follow those eigenvectors: $e^{0 t} \boldsymbol{x}_{1}$ and $e^{-5 t} \boldsymbol{x}_{2}$
3. The solution $\boldsymbol{u}(t)=\boldsymbol{x}_{1}+e^{-5 t} \boldsymbol{x}_{2}$ has steady state $\boldsymbol{x}_{1}=(3,2)$ since $e^{-5 t} \rightarrow 0$.
$4 d(v+w) / d t=(w-v)+(v-w)=0$, so the total $v+w$ is constant. $A=\left[\begin{array}{rr}-1 & 1 \\ 1 & -1\end{array}\right]$ has $\begin{aligned} & \lambda_{1}=0 \\ & \lambda_{2}=-2\end{aligned} \quad$ with $\boldsymbol{x}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \boldsymbol{x}_{2}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$. $\left[\begin{array}{c}v(0) \\ w(0)\end{array}\right]=\left[\begin{array}{l}30 \\ 10\end{array}\right]=20\left[\begin{array}{l}1 \\ 1\end{array}\right]+10\left[\begin{array}{r}1 \\ -1\end{array}\right]$ leads to $\begin{array}{rl}v(1)=20+10 e^{-2} & v(\infty)=20 \\ w(1)=20-10 e^{-2} & w(\infty)=20\end{array}$
$\mathbf{5} \frac{d}{d t}\left[\begin{array}{l}v \\ w\end{array}\right]=\left[\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right]$ has $\lambda=0$ and $\lambda=+2: v(t)=\mathbf{2 0}+\mathbf{1 0} \boldsymbol{e}^{\mathbf{2 t}} \rightarrow-\infty$ as $t \rightarrow \infty$.
$6 A=\left[\begin{array}{ll}a & 1 \\ 1 & a\end{array}\right]$ has real eigenvalues $a+1$ and $a-1$. These are both negative if $\boldsymbol{a}<\mathbf{- 1}$. In this case the solutions of $\boldsymbol{u}^{\prime}=A \boldsymbol{u}$ approach zero.
$B=\left[\begin{array}{rr}b & -1 \\ 1 & b\end{array}\right]$ has complex eigenvalues $b+i$ and $b-i$. These have negative real parts if $\boldsymbol{b}<\mathbf{0}$. In this case and all solutions of $\boldsymbol{v}^{\prime}=B \boldsymbol{v}$ approach zero.

7 A projection matrix has eigenvalues $\lambda=1$ and $\lambda=0$. Eigenvectors $P \boldsymbol{x}=\boldsymbol{x}$ fill the subspace that P projects onto: here $\boldsymbol{x}=(1,1)$. Eigenvectors with $P \boldsymbol{x}=\mathbf{0}$ fill the perpendicular subspace: here $\boldsymbol{x}=(1,-1)$. For the solution to $\boldsymbol{u}^{\prime}=-P \boldsymbol{u}$,
$\boldsymbol{u}(0)=\left[\begin{array}{l}3 \\ 1\end{array}\right]=\left[\begin{array}{l}2 \\ 2\end{array}\right]+\left[\begin{array}{r}1 \\ -1\end{array}\right] \quad \boldsymbol{u}(t)=e^{-t}\left[\begin{array}{l}2 \\ 2\end{array}\right]+e^{0 t}\left[\begin{array}{r}1 \\ -1\end{array}\right]$ approaches $\left[\begin{array}{r}1 \\ -1\end{array}\right]$.
$8\left[\begin{array}{rr}6 & -2 \\ 2 & 1\end{array}\right]$ has $\lambda_{1}=5, \boldsymbol{x}_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \lambda_{2}=2, \boldsymbol{x}_{2}=\left[\begin{array}{l}1 \\ 2\end{array}\right] ;$ rabbits $r(t)=20 e^{5 t}+10 e^{2 t}$, $w(t)=10 e^{5 t}+20 e^{2 t}$. The ratio of rabbits to wolves approaches 20/10; $e^{5 t}$ dominates.

9 (a) $\left[\begin{array}{l}4 \\ 0\end{array}\right]=2\left[\begin{array}{l}1 \\ i\end{array}\right]+2\left[\begin{array}{r}1 \\ -i\end{array}\right] . \quad$ (b) Then $u(t)=2 e^{i t}\left[\begin{array}{l}1 \\ i\end{array}\right]+2 e^{-i t}\left[\begin{array}{r}1 \\ -i\end{array}\right]=\left[\begin{array}{c}4 \cos t \\ 4 \sin t\end{array}\right]$.
$10 \frac{d}{d t}\left[\begin{array}{l}y \\ y^{\prime}\end{array}\right]=\left[\begin{array}{l}y^{\prime} \\ y^{\prime \prime}\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 4 & 5\end{array}\right]\left[\begin{array}{l}y \\ y^{\prime}\end{array}\right]$. This correctly gives $y^{\prime}=y^{\prime}$ and $y^{\prime \prime}=4 y+5 y^{\prime}$.
$A=\left[\begin{array}{ll}0 & 1 \\ 4 & 5\end{array}\right]$ has $\operatorname{det}(A-\lambda I)=\lambda^{2}-5 \lambda-4=0$. Directly substituting $y=e^{\lambda t}$ into $y^{\prime \prime}=5 y^{\prime}+4 y$ also gives $\lambda^{2}=5 \lambda+4$ and the same two values of λ. Those values are $\frac{1}{2}(5 \pm \sqrt{41})$ by the quadratic formula.

11 The series for $e^{A t}$ is $e^{A t}=I+t\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]+$ zeros $=\left[\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right]$.
Then $\left[\begin{array}{c}y(t) \\ y^{\prime}(t)\end{array}\right]=\left[\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right]\left[\begin{array}{c}y(0) \\ y^{\prime}(0)\end{array}\right]\left[\begin{array}{c}y(0)+y^{\prime}(0) t \\ y^{\prime}(0)\end{array}\right]$. This $y(t)=y(0)+y^{\prime}(0) t$ solves the equation-the factor t tells us that A had only one eigenvector: not diagonalizable.
$12 A=\left[\begin{array}{rr}0 & 1 \\ -9 & 6\end{array}\right]$ has trace 6 , det $9, \lambda=3$ and 3 with one independent eigenvector $(1,3)$. Substitute $y=t e^{3 t}$ to show that this gives the needed second solution $\left(y=e^{3 t}\right.$ is the first solution).

13 (a) $y(t)=\cos 3 t$ and $\sin 3 t$ solve $y^{\prime \prime}=-9 y$. It is $\mathbf{3} \cos 3 t$ that starts with $y(0)=3$ and $y^{\prime}(0)=0 . \quad$ (b) $A=\left[\begin{array}{rr}0 & 1 \\ -9 & 0\end{array}\right]$ has det $=9: \lambda=3 i$ and $-3 i$ with eigenvectors $x=\left[\begin{array}{c}1 \\ 3 i\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -3 i\end{array}\right]$. Then $\boldsymbol{u}(t)=\frac{3}{2} e^{3 i t}\left[\begin{array}{c}1 \\ 3 i\end{array}\right]+\frac{3}{2} e^{-3 i t}\left[\begin{array}{r}1 \\ -3 i\end{array}\right]=\left[\begin{array}{r}3 \cos 3 t \\ -\mathbf{9} \sin 3 t\end{array}\right]$.
14 When A is skew-symmetric, the derivative of $\|u(t)\|^{2}$ is zero. Then $\|\boldsymbol{u}(t)\|=\left\|e^{A t} \boldsymbol{u}(0)\right\|$ stays at $\|\boldsymbol{u}(0)\|$. So $e^{A t}$ is matrix orthogonal.
$15 \boldsymbol{u}_{p}=4$ and $\boldsymbol{u}(t)=c e^{t}+4$. For the matrix equation, the particular solution $\boldsymbol{u}_{p}=A^{-1} \boldsymbol{b}$ is $\left[\begin{array}{l}4 \\ 2\end{array}\right]$ and $\boldsymbol{u}(t)=c_{1} e^{t}\left[\begin{array}{l}1 \\ t\end{array}\right]+c_{2} e^{t}\left[\begin{array}{l}0 \\ 1\end{array}\right]+\left[\begin{array}{l}4 \\ 2\end{array}\right]$.
16 Substituting $\boldsymbol{u}=e^{c t} \boldsymbol{v}$ gives $c e^{c t} \boldsymbol{v}=A e^{c t} \boldsymbol{v}-e^{c t} \boldsymbol{b}$ or $(A-c I) \boldsymbol{v}=\boldsymbol{b}$ or $\boldsymbol{v}=(A-$ $c I)^{-1} \boldsymbol{b}=$ particular solution. If c is an eigenvalue then $A-c I$ is not invertible.
17 (a) $\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$
(b) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
(c) $\left[\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right]$. These show the unstable cases
(a) $\lambda_{1}<0$ and $\lambda_{2}>0$
(b) $\lambda_{1}>0$ and $\lambda_{2}>0$
(c) $\lambda=a \pm i b$ with $a>0$
$18 d / d t\left(e^{A t}\right)=A+A^{2} t+\frac{1}{2} A^{3} t^{2}+\frac{1}{6} A^{4} t^{3}+\cdots=A\left(I+A t+\frac{1}{2} A^{2} t^{2}+\frac{1}{6} A^{3} t^{3}+\cdots\right)$.
This is exactly $A e^{A t}$, the derivative we expect.
$19 e^{B t}=I+B t\left(\right.$ short series with $\left.B^{2}=0\right)=\left[\begin{array}{rr}\mathbf{1} & -4 t \\ \mathbf{0} & \mathbf{1}\end{array}\right]$. Derivative $=\left[\begin{array}{rr}0 & -4 \\ 0 & 0\end{array}\right]=$ B.

20 The solution at time $t+T$ is $e^{A(t+T)} \boldsymbol{u}(0)$. Thus $e^{A t}$ times $e^{A T}$ equals $e^{A(t+T)}$.
$21\left[\begin{array}{ll}1 & 4 \\ 0 & 0\end{array}\right]=\left[\begin{array}{rr}1 & 4 \\ 0 & -1\end{array}\right]\left[\begin{array}{ll}\mathbf{1} & 0 \\ 0 & \mathbf{0}\end{array}\right]$ diagonalizes $A=X \Lambda X^{-1}$.
Then $e^{A t}=X e^{\Lambda t} X^{-1}=\left[\begin{array}{rr}1 & 4 \\ 0 & -1\end{array}\right] ;\left[\begin{array}{rr}1 & 4 \\ 0 & -1\end{array}\right]\left[\begin{array}{cc}\boldsymbol{e}^{t} & 0 \\ 0 & \mathbf{1}\end{array}\right]\left[\begin{array}{cc}1 & 4 \\ 0 & -1\end{array}\right]=\left[\begin{array}{cc}e^{t} & 4 e^{t}-4 \\ 0 & 1\end{array}\right]$.
$22 A^{2}=A$ gives $e^{A t}=I+A t+\frac{1}{2} \boldsymbol{A} \boldsymbol{t}^{2}+\frac{1}{6} A t^{3}+\cdots=I+\left(e^{t}-1\right) A=\left[\begin{array}{cc}e^{t} & 4 e^{t}-4 \\ 0 & 1\end{array}\right]$.
$23 e^{A}=\left[\begin{array}{cc}e & 4(e-1) \\ 0 & 1\end{array}\right]$ from 21 and $e^{B}=\left[\begin{array}{rr}1 & -4 \\ 0 & 1\end{array}\right]$ from 19. By direct multiplication $e^{A} e^{B} \neq e^{B} e^{A} \neq e^{A+B}=\left[\begin{array}{ll}e & 0 \\ 0 & 1\end{array}\right]$.
$24 A=\left[\begin{array}{ll}1 & 1 \\ 0 & 3\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]\left[\begin{array}{ll}\mathbf{1} & 0 \\ 0 & \mathbf{3}\end{array}\right]\left[\begin{array}{rr}1 & -\frac{1}{2} \\ 0 & \frac{1}{2}\end{array}\right]$. Then $e^{A t}=\left[\begin{array}{cc}\boldsymbol{e}^{\boldsymbol{t}} & \frac{1}{2}\left(e^{3 t}-e^{t}\right) \\ 0 & \boldsymbol{e}^{\mathbf{3 t}}\end{array}\right]$. At $t=0, e^{A t}=I$ and $\Lambda e^{A t}=A$.
25 The matrix has $A^{2}=\left[\begin{array}{ll}1 & 3 \\ 0 & 0\end{array}\right]^{2}=\left[\begin{array}{ll}1 & 3 \\ 0 & 0\end{array}\right]=A$. Then all $A^{n}=A$. So $e^{A t}=$ $I+\left(t+t^{2} / 2!+\cdots\right) A=I+\left(e^{t}-1\right) A=\left[\begin{array}{cc}e^{t} & 3\left(e^{t}-1\right) \\ 0 & 0\end{array}\right]$ as in Problem 22.
26 (a) The inverse of $e^{A t}$ is $e^{-A t}$
(b) If $A \boldsymbol{x}=\lambda \boldsymbol{x}$ then $e^{A t} \boldsymbol{x}=e^{\lambda t} \boldsymbol{x}$ and $e^{\lambda t} \neq 0$.

To see $e^{A t} \boldsymbol{x}$, write $\left(I+A t+\frac{1}{2} A^{2} t^{2}+\cdots\right) \boldsymbol{x}=\left(1+\lambda t+\frac{1}{2} \lambda^{2} t^{2}+\cdots\right) \boldsymbol{x}=e^{\lambda t} \boldsymbol{x}$.
$27(x, y)=\left(e^{4 t}, e^{-4 t}\right)$ is a growing solution. The correct matrix for the exchanged $\boldsymbol{u}=\left[\begin{array}{l}y \\ x\end{array}\right]$ is $\left[\begin{array}{rr}2 & -2 \\ -4 & 0\end{array}\right]$. It does have the same eigenvalues as the original matrix.
28 Invert $\left[\begin{array}{cc}1 & 0 \\ \Delta t & 1\end{array}\right]$ to produce $\boldsymbol{U}_{n+1}=\left[\begin{array}{cc}1 & 0 \\ -\Delta t & 1\end{array}\right]\left[\begin{array}{cc}1 & \Delta t \\ 0 & 1\end{array}\right] \boldsymbol{U}_{n}=\left[\begin{array}{cc}1 & \Delta t \\ -\Delta t & 1-(\Delta t)^{2}\end{array}\right] \boldsymbol{U}_{n}$.
At $\Delta t=1,\left[\begin{array}{rr}1 & 1 \\ -1 & 0\end{array}\right]$ has $\lambda=e^{i \pi / 3}$ and $e^{-i \pi / 3}$. Both eigenvalues have $\lambda^{6}=1$ so $\boldsymbol{A}^{\mathbf{6}}=\boldsymbol{I}$. Therefore $\boldsymbol{U}_{6}=A^{6} \boldsymbol{U}_{0}$ comes exactly back to \boldsymbol{U}_{0}.
$29 \begin{aligned} & \text { First } A \text { has } \lambda= \pm i \text { and } A^{4}=I . \\ & \text { Second } A \text { has } \lambda=-1,-1 \text { and }\end{aligned} \quad A^{n}=(-1)^{n}\left[\begin{array}{cc}1-2 n & -2 n \\ 2 n & 2 n+1\end{array}\right]$ Linear growth.
30 With $a=\Delta t / 2$ the trapezoidal step is $\boldsymbol{U}_{n+1}=\frac{1}{1+a^{2}}\left[\begin{array}{cc}1-a^{2} & 2 a \\ -2 a & 1-a^{2}\end{array}\right] \boldsymbol{U}_{n}$.
That matrix has orthonormal columns \Rightarrow orthogonal matrix $\Rightarrow\left\|\boldsymbol{U}_{n+1}\right\|=\left\|\boldsymbol{U}_{n}\right\|$

31 (a) If $A \boldsymbol{x}=\lambda \boldsymbol{x}$ then the infinite cosine series gives $(\cos A) \boldsymbol{x}=(\cos \lambda) \boldsymbol{x}$
(b) $\lambda(A)=2 \pi$ and 0 so $\cos \lambda=1$ and 1 which means that $\cos A=I$
(c) $\boldsymbol{u}(t)=3(\cos 2 \pi t)(1,1)+1(\cos 0 t)(1,-1)\left[\boldsymbol{u}^{\prime}=A \boldsymbol{u}\right.$ has $\exp , \boldsymbol{u}^{\prime \prime}=A \boldsymbol{u}$ has $\left.\cos \right]$

32 For proof 2, square the start of the series to see $\left(I+A+\frac{1}{2} A^{2}+\frac{1}{6} A^{3}\right)^{2}=I+2 A+$ $\frac{1}{2}(2 A)^{2}+\frac{1}{6}(2 A)^{3}+\cdots$. The diagonalizing proof is easiest when it works (needing diagonalizable A).

Problem Set 6.4, page 345

Note A way to complete the proof at the end of page 334, (perturbing the matrix to produce distinct eigenvalues) is now on the course website: "Proofs of the Spectral Theorem." math.mit.edu/linearalgebra.

1 The first is $A S A^{\mathrm{T}}$: symmetric but eigenvalues are different from 1 and -1 for S.
The second is $A S A^{-1}$: same eigenvalues as S but not symmetric.
The third is $A S A^{\mathrm{T}}=A S A^{-1}$: symmetric with the same eigenvalues as \boldsymbol{S}.
This needed $B=A^{\mathrm{T}}=A^{-1}$ to be an orthogonal matrix.
2 (a) $A S B$ stays symmetric like S when $B=A^{\mathrm{T}}$
(b) $A S B$ is similar to S when $B=A^{-1}$

To have both (a) and (b) we need $B=A^{\mathrm{T}}=A^{-1}$ to be an orthogonal matrix
$3 A=\left[\begin{array}{lll}1 & 3 & 6 \\ 3 & 3 & 3 \\ 6 & 3 & 5\end{array}\right]+\left[\begin{array}{rrr}0 & -1 & -2 \\ 1 & 0 & -3 \\ 2 & 3 & 0\end{array}\right]=\frac{1}{2}\left(A+A^{\mathrm{T}}\right)+\frac{1}{2}\left(A-A^{\mathrm{T}}\right) . \begin{aligned} & \text { symmetric }+ \text { skew-symmetric. }\end{aligned}$
$4\left(A^{\mathrm{T}} C A\right)^{\mathrm{T}}=A^{\mathrm{T}} C^{\mathrm{T}}\left(A^{\mathrm{T}}\right)^{\mathrm{T}}=A^{\mathrm{T}} C A$. When A is 6 by $3, C$ will be 6 by 6 and the triple product $A^{\mathrm{T}} C A$ is 3 by 3 .
$5 \lambda=0,4,-2$; unit vectors $\pm(0,1,-1) / \sqrt{2}$ and $\pm(2,1,1) / \sqrt{6}$ and $\pm(1,-1,-1) / \sqrt{3}$.
$6 \lambda=10$ and -5 in $\Lambda=\left[\begin{array}{rr}10 & 0 \\ 0 & -5\end{array}\right], \boldsymbol{x}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\left[\begin{array}{r}2 \\ -1\end{array}\right]$ have to be normalized to unit vectors in $Q=\frac{1}{\sqrt{5}}\left[\begin{array}{rr}1 & 2 \\ 2 & -1\end{array}\right]$.
$7 Q=\frac{1}{3}\left[\begin{array}{rrr}2 & 1 & 2 \\ 2 & -2 & -1 \\ -1 & -2 & 2\end{array}\right] \cdot \begin{aligned} & \text { The columns of } Q \text { are unit eigenvectors of } S \\ & \text { Each unit eigenvector could be multiplied by }-1\end{aligned}$
$8 S=\left[\begin{array}{rr}9 & 12 \\ 12 & 16\end{array}\right]$ has $\lambda=0$ and 25 so the columns of Q are the two eigenvectors: $Q=\left[\begin{array}{rr}.8 & .6 \\ -.6 & .8\end{array}\right]$ or we can exchange columns or reverse the signs of any column.

9 (a) $\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ has $\lambda=-1$ and $3 \quad$ (b) The pivots $1,1-b^{2}$ have the same signs as the λ 's (c) The trace is $\lambda_{1}+\lambda_{2}=2$, so S can't have two negative eigenvalues.

10 If $A^{3}=0$ then all $\lambda^{3}=0$ so all $\lambda=0$ as in $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$. If A is symmetric then $A^{3}=Q \Lambda^{3} Q^{\mathrm{T}}=0$ requires $\Lambda=0$. The only symmetric A is $Q 0 Q^{\mathrm{T}}=$ zero matrix.

11 If λ is complex then $\bar{\lambda}$ is also an eigenvalue $(A \overline{\boldsymbol{x}}=\bar{\lambda} \overline{\boldsymbol{x}})$. Always $\lambda+\bar{\lambda}$ is real. The trace is real so the third eigenvalue of a 3 by 3 real matrix must be real.

12 If \boldsymbol{x} is not real then $\lambda=\boldsymbol{x}^{\mathrm{T}} A \boldsymbol{x} / \boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}$ is not always real. Can't assume real eigenvectors!
$13\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right]=2\left[\begin{array}{rr}\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2}\end{array}\right]+4\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right] ;\left[\begin{array}{rr}9 & 12 \\ 12 & 16\end{array}\right]=0\left[\begin{array}{rr}.64 & -.48 \\ -.48 & .36\end{array}\right]+25\left[\begin{array}{ll}.36 & .48 \\ .48 & .64\end{array}\right]$
$14\left[\begin{array}{ll}\boldsymbol{x}_{1} & \boldsymbol{x}_{2}\end{array}\right]$ is an Q matrix so $P_{1}+P_{2}=\boldsymbol{x}_{1} \boldsymbol{x}_{1}^{\mathrm{T}}+\boldsymbol{x}_{2} \boldsymbol{x}_{2}^{\mathrm{T}}=\left[\begin{array}{ll}\boldsymbol{x}_{1} & \boldsymbol{x}_{2}\end{array}\right]\left[\begin{array}{c}\boldsymbol{x}_{1}^{\mathrm{T}} \\ \boldsymbol{x}_{2}^{\mathrm{T}}\end{array}\right]=I ;$ also $P_{1} P_{2}=\boldsymbol{x}_{1}\left(\boldsymbol{x}_{1}^{\mathrm{T}} \boldsymbol{x}_{2}\right) \boldsymbol{x}_{2}^{\mathrm{T}}=$ zero matrix.

Second proof: $P_{1} P_{2}=P_{1}\left(I-P_{1}\right)=P_{1}-P_{1}=0$ since $P_{1}^{2}=P_{1}$.
$15 A=\left[\begin{array}{rr}0 & b \\ -b & 0\end{array}\right]$ has $\lambda=i b$ and $-i b$. The block matrices $\left[\begin{array}{cc}A & 0 \\ 0 & A\end{array}\right]$ and $\left[\begin{array}{cc}0 & A \\ A & 0\end{array}\right]$ are also skew-symmetric with $\lambda=i b$ (twice) and $\lambda=-i b$ (twice).
$16 M$ is skew-symmetric and orthogonal; λ 's must be $i, i,-i,-i$ to have trace zero.
$17 A=\left[\begin{array}{rr}i & 1 \\ 1 & -i\end{array}\right]$ has $\lambda=0,0$ and only one independent eigenvector $\boldsymbol{x}=(i, 1)$. The good property for complex matrices is not $A^{\mathrm{T}}=A$ (symmetric) but $\bar{A}^{\mathrm{T}}=A$ (Hermitian with real eigenvalues and orthogonal eigenvectors: see Problem 22 and Section 9.2).

18 (a) If $A \boldsymbol{z}=\lambda \boldsymbol{y}$ and $A^{\mathrm{T}} \boldsymbol{y}=\lambda \boldsymbol{z}$ then $B[\boldsymbol{y} ;-\boldsymbol{z}]=\left[-A \boldsymbol{z} ; \quad A^{\mathrm{T}} \boldsymbol{y}\right]=-\lambda[\boldsymbol{y} ; \quad-\boldsymbol{z}]$. So $-\lambda$ is also an eigenvalue of B. (b) $A^{\mathrm{T}} A \boldsymbol{z}=A^{\mathrm{T}}(\lambda \boldsymbol{y})=\lambda^{2} \boldsymbol{z}$. (c) $\lambda=-1,-1$, 1,$1 ; \quad \boldsymbol{x}_{1}=(1,0,-1,0), \boldsymbol{x}_{2}=(0,1,0,-1), \boldsymbol{x}_{3}=(1,0,1,0), \boldsymbol{x}_{4}=(0,1,0,1)$.

19 The eigenvalues of $S=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$ are $0, \sqrt{2},-\sqrt{2}$ by Problem 16 with

$$
\boldsymbol{x}_{1}=\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right], \boldsymbol{x}_{2}=\left[\begin{array}{c}
1 \\
1 \\
\sqrt{2}
\end{array}\right], \boldsymbol{x}_{3}=\left[\begin{array}{c}
1 \\
1 \\
-\sqrt{2}
\end{array}\right] .
$$

20 1. \boldsymbol{y} is in the nullspace of S and \boldsymbol{x} is in the column space (that is also row space because $S=S^{\mathrm{T}}$). The nullspace and row space are perpendicular so $\boldsymbol{y}^{\mathrm{T}} \boldsymbol{x}=0$.
2. If $S \boldsymbol{x}=\lambda \boldsymbol{x}$ and $S \boldsymbol{y}=\beta \boldsymbol{y}$ then shift S by βI to have a zero eigenvalue that matches Step 1. $(S-\beta I) \boldsymbol{x}=(\lambda-\beta) \boldsymbol{x}$ and $(S-\beta I) \boldsymbol{y}=\mathbf{0}$ and again \boldsymbol{x} is perpendicular to y.
$21 S$ has $X=\left[\begin{array}{rrr}1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1\end{array}\right] ; B$ has $X=\left[\begin{array}{rrr}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 d\end{array}\right] . \begin{gathered}\text { Perpendicular for } A \\ \text { Not perpendicular for } S \\ \text { since } B^{\mathrm{T}} \neq B\end{gathered}$
$22 S=\left[\begin{array}{cc}1 & 3+4 i \\ 3-4 i & 1\end{array}\right]$ is a Hermitian matrix $\left(\bar{S}^{\mathrm{T}}=S\right)$. Its eigenvalues 6 and -4 are real. Adjust equations (1)-(2) in the text to prove that λ is always real when $\bar{S}^{\mathrm{T}}=S$:
$S \boldsymbol{x}=\lambda \boldsymbol{x}$ leads to $\bar{S} \overline{\boldsymbol{x}}=\bar{\lambda} \overline{\boldsymbol{x}}$. Transpose to $\bar{x}^{\mathrm{T}} S=\bar{x}^{\mathrm{T}} \bar{\lambda}$ using $\bar{S}^{\mathrm{T}}=S$.
Then $\overline{\boldsymbol{x}}^{\mathrm{T}} S \boldsymbol{x}=\overline{\boldsymbol{x}}^{\mathrm{T}} \lambda \boldsymbol{x}$ and also $\overline{\boldsymbol{x}}^{\mathrm{T}} S \boldsymbol{x}=\overline{\boldsymbol{x}}^{\mathrm{T}} \bar{\lambda} \boldsymbol{x}$. So $\lambda=\bar{\lambda}$ is real.

23 (a) False. $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right] \begin{array}{ll}\text { (b) True from } A^{\mathrm{T}}=Q \Lambda Q^{\mathrm{T}}=A & \text { (c) True from } S^{-1}=Q \Lambda^{-1} Q^{\mathrm{T}}\end{array} \quad$ (d) False!
$24 A$ and A^{T} have the same λ 's but the order of the \boldsymbol{x} 's can change. $A=\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]$ has $\lambda_{1}=i$ and $\lambda_{2}=-i$ with $\boldsymbol{x}_{1}=(1, i)$ first for A but $\boldsymbol{x}_{1}=(1,-i)$ is first for A^{T}.
$25 A$ is invertible, orthogonal, permutation, diagonalizable, Markov; B is projection, diagonalizable, Markov. A allows $Q R, X \Lambda X^{-1}, Q \Lambda Q^{\mathrm{T}} ; B$ allows $X \Lambda X^{-1}$ and $Q \Lambda Q^{\mathrm{T}}$.

26 Symmetry gives $Q \Lambda Q^{\mathrm{T}}$ if $b=1$; repeated λ and no X if $b=-1$; singular if $b=0$.
27 Orthogonal and symmetric requires $|\lambda|=1$ and λ real, so $\lambda= \pm 1$. Then $S= \pm I$ or $S=Q \Lambda Q^{\mathrm{T}}=\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{rr}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]=\left[\begin{array}{rr}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & -\cos 2 \theta\end{array}\right]$.
28 Eigenvectors $(1,0)$ and $(\mathbf{1}, \mathbf{1})$ give a 45° angle even with A^{T} very close to A.
29 The roots of $\lambda^{2}+b \lambda+c=0$ are $\frac{1}{2}\left(-b \pm \sqrt{b^{2}-4 a c}\right)$. Then $\lambda_{1}-\lambda_{2}$ is $\sqrt{b^{2}-4 c}$. For $\operatorname{det}(A+t B-\lambda I)$ we have $b=-3-8 t$ and $c=2+16 t-t^{2}$. The minimum of $b^{2}-4 c$ is $1 / 17$ at $t=2 / 17$. Then $\lambda_{2}-\lambda_{1}=1 / \sqrt{17}$: close but not equal !
$30 S=\left[\begin{array}{cc}4 & 2+i \\ 2-i & 0\end{array}\right]=\bar{S}^{\mathrm{T}}$ has real eigenvalues $\lambda=5$ and -1 with trace $=4$ and det $=-5$. The solution to 20 proves that λ is real when $\bar{S}^{\mathrm{T}}=S$ is Hermitian.
31 (a) $A=Q \Lambda \bar{Q}^{\mathrm{T}}$ times $\bar{A}^{\mathrm{T}}=Q \bar{\Lambda}^{\mathrm{T}} \bar{Q}^{\mathrm{T}}$ equals \bar{A}^{T} times A because $Q=\bar{Q}^{\mathrm{T}}$ and $\Lambda \bar{\Lambda}^{\mathrm{T}}=\bar{\Lambda}^{\mathrm{T}} \Lambda$ (diagonal!) (b) Step 2: The 1,1 entries of $\bar{T}^{\mathrm{T}} T$ and $T \bar{T}^{\mathrm{T}}$ are $|a|^{2}$ and $|a|^{2}+|b|^{2}$. Equally makes $b=0$ and $T=\Lambda$.
$32 a_{11}$ is $\left[q_{11} \ldots q_{1 n}\right]\left[\lambda_{1} \bar{q}_{11} \ldots \lambda_{n} \bar{q}_{1 n}\right]^{\mathrm{T}} \leq \lambda_{\max }\left(\left|q_{11}\right|^{2}+\cdots+\left|q_{1 n}\right|^{2}\right)=\lambda_{\max }$.
33 (a) $\boldsymbol{x}^{\mathrm{T}}(A \boldsymbol{x})=(A \boldsymbol{x})^{\mathrm{T}} \boldsymbol{x}=\boldsymbol{x}^{\mathrm{T}} A^{\mathrm{T}} \boldsymbol{x}=-\boldsymbol{x}^{\mathrm{T}} A \boldsymbol{x}$. (b) $\overline{\boldsymbol{z}}^{\mathrm{T}} A \boldsymbol{z}$ is pure imaginary, its real part is $\boldsymbol{x}^{\mathrm{T}} A \boldsymbol{x}+\boldsymbol{y}^{\mathrm{T}} A \boldsymbol{y}=0+0 \quad$ (c) $\operatorname{det} A=\lambda_{1} \ldots \lambda_{n} \geq 0:$ pairs of λ 's $=i b,-i b$.

34 Since S is diagonalizable with eigenvalue matrix $\Lambda=2 I$, the matrix S itself has to be $X \Lambda X^{-1}=X(2 I) X^{-1}=2 I$. (The unsymmetric matrix [21;02] also has $\lambda=2,2$.)

35 (a) $S^{\mathrm{T}}=S$ and $S^{\mathrm{T}} S=I$ lead to $S^{2}=I$.
(b) The only possible eigenvalues of S are 1 and -1 .
(c) $\Lambda=\left[\begin{array}{rr}I & 0 \\ 0 & -I\end{array}\right]$ so $S=\left[\begin{array}{ll}Q_{1} & Q_{2}\end{array}\right] \Lambda\left[\begin{array}{c}Q_{1}^{\mathrm{T}} \\ Q_{2}^{\mathrm{T}}\end{array}\right]=Q_{1} Q_{1}^{\mathrm{T}}-Q_{2} Q_{2}^{\mathrm{T}}$ with $Q_{1}^{\mathrm{T}} Q_{2}=0$.
$36\left(A^{\mathrm{T}} S A\right)^{\mathrm{T}}=A^{\mathrm{T}} S^{\mathrm{T}} A^{\mathrm{TT}}=A^{\mathrm{T}} S A$. This matrix $A^{\mathrm{T}} S A$ may have different eigenvalues from S, but the "inertia theorem" says that the two sets of eigenvalues have the same signs. The inertia $=$ number of (positive, zero, negative) eigenvalues is the same for S and $A^{\mathrm{T}} S A$.

37 Substitute $\lambda=a$ to find $\operatorname{det}(S-a I)=a^{2}-a^{2}-c a+a c-b^{2}=-b^{2}$ (negative). The parabola crosses at the eigenvalues λ because they have $\operatorname{det}(S-\lambda I)=0$.

Problem Set 6.5, page 358

1 Suppose $a>0$ and $a c>b^{2}$ so that also $c>b^{2} / a>0$.
(i) The eigenvalues have the same sign because $\lambda_{1} \lambda_{2}=\operatorname{det}=a c-b^{2}>0$.
(ii) That sign is positive because $\lambda_{1}+\lambda_{2}>0$ (it equals the trace $a+c>0$).

2 Only $S_{4}=\left[\begin{array}{rr}1 & 10 \\ 10 & 101\end{array}\right]$ has two positive eigenvalues since $101>10^{2}$.
$\boldsymbol{x}^{\mathrm{T}} S_{1} \boldsymbol{x}=5 x_{1}^{2}+12 x_{1} x_{2}+7 x_{2}^{2}$ is negative for example when $x_{1}=4$ and $x_{2}=-3$:
A_{1} is not positive definite as its determinant confirms; S_{2} has trace $c_{0} ; S_{3}$ has det $=0$.
$3 \begin{aligned} & \text { Positive definite } \\ & \text { for }-3<b<3\end{aligned}\left[\begin{array}{ll}1 & 0 \\ b & 1\end{array}\right]\left[\begin{array}{cc}1 & b \\ 0 & 9-b^{2}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ b & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 0 & 9-b^{2}\end{array}\right]\left[\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right]=L D L^{\mathrm{T}}$ $\begin{aligned} & \text { Positive definite } \\ & \text { for } c>8\end{aligned}\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]\left[\begin{array}{cc}2 & 4 \\ 0 & c-8\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]\left[\begin{array}{cc}2 & 0 \\ 0 & c-8\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]=L D L^{\mathrm{T}}$.

$$
\begin{aligned}
& \text { Positive definite } \\
& \text { for } c>b
\end{aligned} \quad L=\left[\begin{array}{cc}
1 & 1 \\
-b / c & 0
\end{array}\right] \quad D=\left[\begin{array}{cc}
c & 0 \\
0 & c-b / c
\end{array}\right] \quad S=L D L^{\mathrm{T}} .
$$

$4 f(x, y)=x^{2}+4 x y+9 y^{2}=(x+2 y)^{2}+5 y^{2} ; x^{2}+6 x y+9 y^{2}=(x+3 y)^{2}$.
$5 x^{2}+4 x y+3 y^{2}=(x+2 y)^{2}-y^{2}=$ difference of squares is negative at $x=2, y=-1$, where the first square is zero.
$6 A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ produces $f(x, y)=\left[\begin{array}{ll}x & y\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\mathbf{2 x y} . A$ has $\lambda=1$ and -1 . Then A is an indefinite matrix and $f(x, y)=2 x y$ has a saddle point.
$7 A^{\mathrm{T}} A=\left[\begin{array}{rr}1 & 2 \\ 2 & 13\end{array}\right]$ and $A^{\mathrm{T}} A=\left[\begin{array}{cc}6 & 5 \\ 5 & 6\end{array}\right]$ are positive definite; $A^{\mathrm{T}} A=\left[\begin{array}{lll}2 & 3 & 3 \\ 3 & 5 & 4 \\ 3 & 4 & 5\end{array}\right]$ is singular (and positive semidefinite). The first two A 's have independent columns. The 2 by $3 A$ cannot have full column rank 3 , with only 2 rows; $A^{\mathrm{T}} A$ is singular.
$\boldsymbol{8} S=\left[\begin{array}{rr}3 & 6 \\ 6 & 16\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]\left[\begin{array}{ll}3 & 0 \\ 0 & 4\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right] . \begin{aligned} & \text { Pivots } 3,4 \text { outside squares, } \ell_{i j} \text { inside. } \\ & \boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x}=3(x+2 y)^{2}+4 y^{2}\end{aligned}$
$\boldsymbol{9} S=\left[\begin{array}{rrr}4 & -4 & 8 \\ -4 & 4 & -8 \\ 8 & -8 & 16\end{array}\right] \begin{aligned} & \text { has only one pivot }=4, \operatorname{rank} S=1, \\ & \text { eigenvalues are } 24,0,0, \operatorname{det} S=0 .\end{aligned}$
$10 S=\left[\begin{array}{rrr}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right] \begin{aligned} & \text { has pivots } \\ & 2, \frac{3}{2}, \frac{4}{3} ;\end{aligned} T=\left[\begin{array}{rrr}2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2\end{array}\right]$ is singular; $T\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$.
11 Corner determinants $\left|S_{1}\right|=2,\left|S_{2}\right|=6,\left|S_{3}\right|=30$. The pivots are $2 / 1,6 / 2,30 / 6$.
$12 S$ is positive definite for $c>1$; determinants $c, c^{2}-1$, and $(c-1)^{2}(c+2)>0$. T is never positive definite (determinants $d-4$ and $-4 d+12$ are never both positive).
$13 S=\left[\begin{array}{rr}1 & 5 \\ 5 & 10\end{array}\right]$ is an example with $a+c>2 b$ but $a c<b^{2}$, so not positive definite.
14 The eigenvalues of S^{-1} are positive because they are $1 / \lambda(S)$. Also the entries of S^{-1} pass the determinant tests. And $\boldsymbol{x}^{\mathrm{T}} S^{-1} \boldsymbol{x}=\left(S^{-1} \boldsymbol{x}\right)^{\mathrm{T}} S\left(S^{-1} \boldsymbol{x}\right)>0$ for all $\boldsymbol{x} \neq \mathbf{0}$.

15 Since $\boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x}>0$ and $\boldsymbol{x}^{\mathrm{T}} T \boldsymbol{x}>0$ we have $\boldsymbol{x}^{\mathrm{T}}(S+T) \boldsymbol{x}=\boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x}+\boldsymbol{x}^{\mathrm{T}} T \boldsymbol{x}>0$ for all $\boldsymbol{x} \neq \mathbf{0}$. Then $S+T$ is a positive definite matrix. The second proof uses the test $S=A^{\mathrm{T}} A$ (independent columns in A): If $S=A^{\mathrm{T}} A$ and $T=B^{\mathrm{T}} B$ pass this test, then $S+T=\left[\begin{array}{ll}A & B\end{array}\right]^{\mathrm{T}}\left[\begin{array}{l}A \\ B\end{array}\right]$ also passes, and must be positive definite.
$16 \boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x}$ is zero when $\left(x_{1}, x_{2}, x_{3}\right)=(0,1,0)$ because of the zero on the diagonal. Actually $\boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x}$ goes negative for $\boldsymbol{x}=(1,-10,0)$ because the second pivot is negative.

17 If $a_{j j}$ were smaller than all λ 's, $S-a_{j j} I$ would have all eigenvalues >0 (positive definite). But $S-a_{j j} I$ has a zero in the (j, j) position; impossible by Problem 16.

18 If $S \boldsymbol{x}=\lambda \boldsymbol{x}$ then $\boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x}=\lambda \boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}$. If S is positive definite this leads to $\lambda=\boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x} / \boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}>$ 0 (ratio of positive numbers). So positive energy \Rightarrow positive eigenvalues.

19 All cross terms are $\boldsymbol{x}_{i}^{\mathrm{T}} \boldsymbol{x}_{j}=0$ because symmetric matrices have orthogonal eigenvectors. So positive eigenvalues \Rightarrow positive energy.

20 (a) The determinant is positive; all $\lambda>0 \quad$ (b) All projection matrices except I are singular (c) The diagonal entries of D are its eigenvalues (d) $S=-I$ has det $=$ +1 when n is even.
$21 S$ is positive definite when $s>8 ; T$ is positive definite when $t>5$ by determinants.
$22 A=\frac{\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right]}{\sqrt{2}}\left[\begin{array}{cc}\sqrt{9} & \\ & \sqrt{1}\end{array}\right] \frac{\left[\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right]}{\sqrt{2}}=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right] ; A=Q\left[\begin{array}{ll}4 & 0 \\ 0 & 2\end{array}\right] Q^{\mathrm{T}}=\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right]$.
$23 x^{2} / a^{2}+y^{2} / b^{2}$ is $\boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x}$ when $S=\operatorname{diag}\left(1 / a^{2}, 1 / b^{2}\right)$. Then $\lambda_{1}=1 / a^{2}$ and $\lambda_{2}=1 / b^{2}$ so $a=1 / \sqrt{\lambda_{1}}$ and $b=1 / \sqrt{\lambda_{2}}$. The ellipse $9 x^{2}+16 y^{2}=1$ has axes with half-lengths $a=\frac{1}{3}$ and $b=\frac{1}{4}$. The points $\left(\frac{1}{3}, 0\right)$ and $\left(0, \frac{1}{4}\right)$ are at the ends of the axes.

24 The ellipse $x^{2}+x y+y^{2}=1$ has axes with half-lengths $1 / \sqrt{\lambda}=\sqrt{2}$ and $\sqrt{2 / 3}$.
$25 S=C^{\mathrm{T}} C=\left[\begin{array}{ll}9 & 3 \\ 3 & 5\end{array}\right] ;\left[\begin{array}{cc}4 & 8 \\ 8 & 25\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]\left[\begin{array}{ll}4 & 0 \\ 0 & 9\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ and $C=\left[\begin{array}{ll}2 & 4 \\ 0 & 3\end{array}\right]$
26 The Cholesky factors $C=(L \sqrt{D})^{\mathrm{T}}=\left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2\end{array}\right]$ and $C=\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & \sqrt{5}\end{array}\right]$ have square roots of the pivots from D. Note again $C^{\mathrm{T}} C=L D L^{\mathrm{T}}=S$.

27 Writing out $\boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x}=\boldsymbol{x}^{\mathrm{T}} L D L^{\mathrm{T}} \boldsymbol{x}$ gives $a x^{2}+2 b x y+c y^{2}=a\left(x+\frac{b}{a} y\right)^{2}+\frac{a c-b^{2}}{a} y^{2}$. So the $L D L^{\mathrm{T}}$ from elimination is exactly the same as completing the square. The example $2 x^{2}+8 x y+10 y^{2}=2(x+2 y)^{2}+2 y^{2}$ with pivots 2,2 outside the squares and multiplier 2 inside.
$28 \operatorname{det} S=(1)(10)(1)=10 ; \lambda=2$ and $5 ; \boldsymbol{x}_{1}=(\cos \theta, \sin \theta), \boldsymbol{x}_{2}=(-\sin \theta, \cos \theta)$; the λ 's are positive. So S is positive definite.
$29 S_{1}=\left[\begin{array}{cc}6 x^{2} & 2 x \\ 2 x & 2\end{array}\right]$ is semidefinite; $f_{1}=\left(\frac{1}{2} x^{2}+y\right)^{2}=0$ on the curve $\frac{1}{2} x^{2}+y=0$; $S_{2}=\left[\begin{array}{cc}6 x & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ is indefinite at $(0,1)$ where first derivatives $=0$. Then $x=0, y=1$ is a saddle point of the function $f_{2}(x, y)$.
$30 a x^{2}+2 b x y+c y^{2}$ has a saddle point if $a c<b^{2}$. The matrix is indefinite $(\lambda<0$ and $\lambda>0)$ because the determinant $a c-b^{2}$ is negative.

31 If $c>9$ the graph of z is a bowl, if $c<9$ the graph has a saddle point. When $c=9$ the graph of $z=(2 x+3 y)^{2}$ is a "trough" staying at zero along the line $2 x+3 y=0$.

32 Orthogonal matrices, exponentials $e^{A t}$, matrices with det $=1$ are groups. Examples of subgroups are orthogonal matrices with det $=1$, exponentials $e^{A n}$ for integer n. Another subgroup: lower triangular elimination matrices E with diagonal 1's.

33 A product $S T$ of symmetric positive definite matrices comes into many applications. The "generalized" eigenvalue problem $K \boldsymbol{x}=\lambda M \boldsymbol{x}$ has $S T=M^{-1} K$. (Often we use
$\operatorname{eig}(K, M)$ without actually inverting M.) All eigenvalues λ are positive:

$$
S T \boldsymbol{x}=\lambda \boldsymbol{x} \text { gives }(T \boldsymbol{x})^{\mathrm{T}} S T \boldsymbol{x}=(T \boldsymbol{x})^{\mathrm{T}} \lambda x . \text { Then } \lambda=\boldsymbol{x}^{\mathrm{T}} T^{\mathrm{T}} S T \boldsymbol{x} / \boldsymbol{x}^{\mathrm{T}} T \boldsymbol{x}>0 .
$$

34 The five eigenvalues of K are $2-2 \cos \frac{k \pi}{6}=2-\sqrt{3}, 2-1,2,2+1,2+\sqrt{3}$. The product of those eigenvalues is $6=\operatorname{det} K$.

35 Put parentheses in $\boldsymbol{x}^{\mathrm{T}} A^{\mathrm{T}} C A \boldsymbol{x}=(A \boldsymbol{x})^{\mathrm{T}} C(A \boldsymbol{x})$. Since C is assumed positive definite, this energy can drop to zero only when $A \boldsymbol{x}=\mathbf{0}$. Sine A is assumed to have independent columns, $A \boldsymbol{x}=\mathbf{0}$ only happens when $\boldsymbol{x}=\mathbf{0}$. Thus $A^{\mathrm{T}} C A$ has positive energy and is positive definite.

My textbooks Computational Science and Engineering and Introduction to Applied Mathematics start with many examples of $A^{\mathrm{T}} C A$ in a wide range of applications. I believe this is a unifying concept from linear algebra.

36 (a) The eigenvectors of $\lambda_{1} I-S$ are $\lambda_{1}-\lambda_{1}, \lambda_{1}-\lambda_{2}, \ldots, \lambda_{1}-\lambda_{n}$. Those are ≥ 0; $\lambda_{1} I-S$ is semidefinite.
(b) Semidefinite matrices have energy $\boldsymbol{x}^{\mathrm{T}}\left(\lambda_{1} I-S\right) \boldsymbol{x}_{2} \geq 0$. Then $\lambda_{1} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{x} \geq \boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x}$.
(c) Part (b) says $\boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x} / \boldsymbol{x}^{\mathrm{T}} \boldsymbol{x} \leq \lambda_{1}$ for all \boldsymbol{x}. Equality at the eigenvector with $S \boldsymbol{x}=$ $\lambda_{1} \boldsymbol{x}$.

37 Energy $\boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x}=a\left(x_{1}+x_{2}+x_{3}\right)^{2}+c\left(x_{2}-x_{3}\right)^{2} \geq 0$ if $a \geq 0$ and $c \geq 0$: semidefinite. S has rank ≤ 2 and determinant $=0$; cannot be positive definite for any a and c.

Problem Set 6.6, page 360

$1 B=G C G^{-1}=G F^{-1} A F G^{-1}$ so $M=F G^{-1}$. C similar to A and $B \Rightarrow A$ similar to B.
$2 A=\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]$ is similar to $B=\left[\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right]=M^{-1} A M$ with $M=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
$3 B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]^{-1}\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]=M^{-1} A M$;
$B=\left[\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right]=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]^{-1}\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right] ;$
$B=\left[\begin{array}{ll}4 & 3 \\ 2 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]^{-1}\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
$4 A$ has no repeated λ so it can be diagonalized: $S^{-1} A S=\Lambda$ makes A similar to Λ.
$5\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]$ are similar (they all have eigenvalues 1 and 0). $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is by itself and also $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ is by itself with eigenvalues 1 and -1 .
6 Eight families of similar matrices: six matrices have $\lambda=0,1$ (one family); three matrices have $\lambda=1,1$ and three have $\lambda=0,0$ (two families each!); one has $\lambda=1,-1$; one has $\lambda=2,0$; two matrices have $\lambda=\frac{1}{2}(1 \pm \sqrt{5})$ (they are in one family).
7 (a) $\left(M^{-1} A M\right)\left(M^{-1} \boldsymbol{x}\right)=M^{-1}(A \boldsymbol{x})=M^{-1} \mathbf{0}=\mathbf{0} \quad$ (b) The nullspaces of A and of $M^{-1} A M$ have the same dimension. Different vectors and different bases.
$8 \begin{aligned} & \text { Same } \Lambda \\ & \text { Same } S\end{aligned} \quad$ But $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right] \begin{aligned} & \text { have the same line of eigenvectors } \\ & \text { and the same eigenvalues } \lambda=0,0 .\end{aligned}$
$9 A^{2}=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right], A^{3}=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]$, every $A^{k}=\left[\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right] . A^{0}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $A^{-1}=$ $\left[\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right]$.
$10 J^{2}=\left[\begin{array}{cc}c^{2} & 2 c \\ 0 & c^{2}\end{array}\right]$ and $J^{k}=\left[\begin{array}{cc}c^{k} & k c^{k-1} \\ 0 & c^{k}\end{array}\right] ; J^{0}=I$ and $J^{-1}=\left[\begin{array}{cc}c^{-1} & -c^{-2} \\ 0 & c^{-1}\end{array}\right]$.
$11 \boldsymbol{u}(0)=\left[\begin{array}{l}5 \\ 2\end{array}\right]=\left[\begin{array}{c}v(0) \\ w(0)\end{array}\right]$. The equation $\frac{d \boldsymbol{u}}{d t}=\left[\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right] \boldsymbol{u}$ has $\frac{d v}{d t}=\lambda v+w$ and $\frac{d w}{d t}=\lambda w$. Then $w(t)=2 e^{\lambda t}$ and $v(t)$ must include $2 t e^{\lambda t}$ (this comes from the repeated λ). To match $v(0)=5$, the solution is $v(t)=2 t e^{\lambda t}+5 e^{\lambda t}$.

12 If $M^{-1} J M=K$ then $J M=\left[\begin{array}{cccc}m_{21} & m_{22} & m_{23} & m_{24} \\ 0 & \mathbf{0} & \mathbf{0} & 0 \\ m_{41} & m_{42} & m_{43} & m_{44} \\ 0 & 0 & 0 & 0\end{array}\right]=M K=\left[\begin{array}{cccc}\mathbf{0} & m_{12} & m_{13} & \mathbf{0} \\ 0 & m_{22} & m_{23} & 0 \\ 0 & m_{32} & m_{33} & 0 \\ 0 & m_{42} & m_{43} & 0\end{array}\right]$.
That means $m_{21}=m_{22}=m_{23}=m_{24}=0 . M$ is not invertible, J not similar to K.
13 The five 4 by 4 Jordan forms with $\lambda=0,0,0,0$ are $J_{1}=$ zero matrix and

$$
\begin{aligned}
& J_{2}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad J_{3}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& J_{4}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \quad J_{5}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Problem 12 showed that J_{3} and J_{4} are not similar, even with the same rank. Every matrix with all $\lambda=0$ is "nilpotent" (its nth power is $A^{n}=$ zero matrix). You see $J^{4}=0$ for these matrices. How many possible Jordan forms for $n=5$ and all $\lambda=0$?

14 (1) Choose $M_{i}=$ reverse diagonal matrix to get $M_{i}^{-1} J_{i} M_{i}=M_{i}^{\mathrm{T}}$ in each block
(2) M_{0} has those diagonal blocks M_{i} to get $M_{0}^{-1} J M_{0}=J^{\mathrm{T}}$. (3) $A^{\mathrm{T}}=\left(M^{-1}\right)^{\mathrm{T}} J^{\mathrm{T}} M^{\mathrm{T}}$ equals $\left(M^{-1}\right)^{\mathrm{T}} M_{0}^{-1} J M_{0} M^{\mathrm{T}}=\left(M M_{0} M^{\mathrm{T}}\right)^{-1} A\left(M M_{0} M^{\mathrm{T}}\right)$, and A^{T} is similar to A.
$15 \operatorname{det}\left(M^{-1} A M-\lambda I\right)=\operatorname{det}\left(M^{-1} A M-M^{-1} \lambda I M\right)$. This is $\operatorname{det}\left(M^{-1}(A-\lambda I) M\right)$.
By the product rule, the determinants of M and M^{-1} cancel to leave $\operatorname{det}(A-\lambda I)$.
$16\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is similar to $\left[\begin{array}{ll}d & c \\ b & a\end{array}\right] ;\left[\begin{array}{ll}b & a \\ d & c\end{array}\right]$ is similar to $\left[\begin{array}{ll}c & d \\ a & b\end{array}\right]$. So two pairs of similar matrices but $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is not similar to $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$: different eigenvalues!

17 (a) False: Diagonalize a nonsymmetric $A=S \Lambda S^{-1}$. Then Λ is symmetric and similar (b) True: A singular matrix has $\lambda=0$. (c) False: $\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]$ and $\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$ are similar
(they have $\lambda= \pm 1$) (d) True: Adding I increases all eigenvalues by 1
$18 A B=B^{-1}(B A) B$ so $A B$ is similar to $B A$. If $A B \boldsymbol{x}=\lambda \boldsymbol{x}$ then $B A(B \boldsymbol{x})=\lambda(B \boldsymbol{x})$.

19 Diagonal blocks 6 by 6,4 by $4 ; A B$ has the same eigenvalues as $B A$ plus $6-4$ zeros.

20 (a) $A=M^{-1} B M \Rightarrow A^{2}=\left(M^{-1} B M\right)\left(M^{-1} B M\right)=M^{-1} B^{2} M$. So A^{2} is similar to B^{2}. (b) A^{2} equals $(-A)^{2}$ but A may not be similar to $B=-A$ (it could be!). (c) $\left[\begin{array}{ll}3 & 1 \\ 0 & 4\end{array}\right]$ is diagonalizableto $\left[\begin{array}{ll}3 & 0 \\ 0 & 4\end{array}\right]$ because $\lambda_{1} \neq \lambda_{2}$, sothesematrices are similar. (d) $\left[\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right]$ has only one eigenvector, so not diagonalizable (e) $P A P^{\mathrm{T}}$ is similar to A.
$21 J^{2}$ has three 1's down the second superdiagonal, and two independent eigenvectors for $\lambda=0$. Its 5 by 5 Jordan form is $\left[\begin{array}{ll}J_{3} & \\ & J_{2}\end{array}\right]$ with $J_{3}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$ and $J_{2}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$. Note to professors: An interesting question: Which matrices A have (complex) square roots $R^{2}=A$? If A is invertible, no problem. But any Jordan blocks for $\lambda=0$ must have sizes $n_{1} \geq n_{2} \geq \ldots \geq n_{k} \geq n_{k+1}=0$ that come in pairs like 3 and 2 in this example: $n_{1}=\left(n_{2}\right.$ or $\left.n_{2}+1\right)$ and $n_{3}=\left(n_{4}\right.$ or $\left.n_{4}+1\right)$ and so on.

$$
\begin{aligned}
& \text { A list of all } 3 \text { by } 3 \text { and } 4 \text { by } 4 \text { Jordan forms could be }\left[\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right],\left[\begin{array}{lll}
a & 1 & 0 \\
0 & a & 0 \\
0 & 0 & b
\end{array}\right] \text {, } \\
& {\left[\begin{array}{ccc}
a & 1 & 0 \\
0 & a & 1 \\
0 & 0 & a
\end{array}\right] \quad \begin{array}{l}
\text { (for any numbers } a, b, c \text {) } \\
\text { with } 3,2,1 \text { eigenvectors; } \operatorname{diag}(a, b, c, d) \quad \text { and }
\end{array}} \\
& {\left[\begin{array}{ll}
a & 1
\end{array}\right.} \\
& \left.\begin{array}{lll}
1 & & \\
a & & \\
& b & \\
& & c
\end{array}\right], \\
& {\left[\begin{array}{llll}
a & 1 & & \\
& a & & \\
& & b & 1 \\
& & & \\
& & &
\end{array}\right],\left[\begin{array}{llll}
a & 1 & & \\
& & 1 & \\
& & a & \\
& & & \\
& & &
\end{array}\right],\left[\begin{array}{llll}
a & 1 & & \\
& & 1 & \\
& & a & 1 \\
& & & \\
& & &
\end{array}\right] \text { with 4, 3, 2, } 1 \text { eigenvectors. }}
\end{aligned}
$$

22 If all roots are $\lambda=0$, this means that $\operatorname{det}(A-\lambda I)$ must be just λ^{n}. The CayleyHamilton Theorem in Problem 6.2.32 immediately says that $A^{n}=$ zero matrix. The key example is a single n by n Jordan block (with $n-1$ ones above the diagonal): Check directly that $J^{n}=$ zero matrix.

23 Certainly $Q_{1} R_{1}$ is similar to $R_{1} Q_{1}=Q_{1}^{-1}\left(Q_{1} R_{1}\right) Q_{1}$. Then $A_{1}=Q_{1} R_{1}-c s^{2} I$ is similar to $A_{2}=R_{1} Q_{1}-c s^{2} I$.
$24 A$ could have eigenvalues $\lambda=2$ and $\lambda=\frac{1}{2}$ (A could be diagonal). Then A^{-1} has the same two eigenvalues (and is similar to A).

Problem Set 6.7, page 371
$\boldsymbol{1} A=U \Sigma V^{\mathrm{T}}=\left[\begin{array}{ll}\boldsymbol{u}_{1} & \boldsymbol{u}_{2}\end{array}\right]\left[\begin{array}{ll}\sigma_{1} & \\ & 0\end{array}\right]\left[\begin{array}{ll}\boldsymbol{v}_{1} & \boldsymbol{v}_{2}\end{array}\right]^{\mathrm{T}}=\frac{\left[\begin{array}{ll}1 & 3 \\ 3 & -1\end{array}\right]}{\left[\begin{array}{rr}\sqrt{50} & 0 \\ 0 & 0\end{array}\right]} \underset{\frac{\left[\begin{array}{ll}1 & 2 \\ 2 & -1\end{array}\right]}{\sqrt{5}}}{\left[\begin{array}{ll}{\left[\begin{array}{ll}\sqrt{5}\end{array}\right.} \\ \hline\end{array}\right]}$

2 This $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right]$ is a 2 by 2 matrix of rank 1. Its row space has basis \boldsymbol{v}_{1}, its nullspace has basis \boldsymbol{v}_{2}, its column space has basis \boldsymbol{u}_{1}, its left nullspace has basis \boldsymbol{u}_{2} :

$$
\begin{aligned}
& \text { Row space } \frac{1}{\sqrt{5}}\left[\begin{array}{l}
1 \\
2
\end{array}\right] \text { Nullspace } \frac{1}{\sqrt{5}}\left[\begin{array}{r}
2 \\
-1
\end{array}\right] \\
& \text { Column space } \frac{1}{\sqrt{10}}\left[\begin{array}{l}
1 \\
3
\end{array}\right], \boldsymbol{N}\left(A^{\mathrm{T}}\right) \quad \frac{1}{\sqrt{10}}\left[\begin{array}{r}
3 \\
-1
\end{array}\right] .
\end{aligned}
$$

3 If A has rank 1 then so does $A^{\mathrm{T}} A$. The only nonzero eigenvalue of $A^{\mathrm{T}} A$ is its trace, which is the sum of all $a_{i j}^{2}$. (Each diagonal entry of $A^{\mathrm{T}} A$ is the sum of $a_{i j}^{2}$ down one column, so the trace is the sum down all columns.) Then $\sigma_{1}=$ square root of this sum, and $\sigma_{1}^{2}=$ this sum of all $a_{i j}^{2}$.
$4 A^{\mathrm{T}} A=A A^{\mathrm{T}}=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$ has eigenvalues $\sigma_{1}^{2}=\frac{3+\sqrt{5}}{2}, \sigma_{2}^{2}=\frac{3-\sqrt{5}}{2} . \begin{aligned} & \text { But } A \text { is } \\ & \text { indefinite }\end{aligned}$ $\sigma_{1}=(1+\sqrt{5}) / 2=\lambda_{1}(A), \sigma_{2}=(\sqrt{5}-1) / 2=-\lambda_{2}(A) ; \boldsymbol{u}_{1}=\boldsymbol{v}_{1}$ but $\boldsymbol{u}_{2}=-\boldsymbol{v}_{2}$.

5 A proof that eigshow finds the SVD. When $\boldsymbol{V}_{1}=(1,0), \boldsymbol{V}_{2}=(0,1)$ the demo finds $A \boldsymbol{V}_{1}$ and $A \boldsymbol{V}_{2}$ at some angle θ. A 90° turn by the mouse to $\boldsymbol{V}_{2},-\boldsymbol{V}_{1}$ finds $A \boldsymbol{V}_{2}$ and $-A \boldsymbol{V}_{1}$ at the angle $\pi-\theta$. Somewhere between, the constantly orthogonal \boldsymbol{v}_{1} and \boldsymbol{v}_{2} must produce $A \boldsymbol{v}_{1}$ and $A \boldsymbol{v}_{2}$ at angle $\pi / 2$. Those orthogonal directions give \boldsymbol{u}_{1} and \boldsymbol{u}_{2}.
$6 A A^{\mathrm{T}}=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$ has $\sigma_{1}^{2}=3$ with $\boldsymbol{u}_{1}=\left[\begin{array}{l}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$ and $\sigma_{2}^{2}=1$ with $\boldsymbol{u}_{2}=\left[\begin{array}{r}1 / \sqrt{2} \\ -1 / \sqrt{2}\end{array}\right]$.
$A^{\mathrm{T}} A=\left[\begin{array}{ccc}1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1\end{array}\right]$ has $\sigma_{1}^{2}=3$ with $\boldsymbol{v}_{1}=\left[\begin{array}{c}1 / \sqrt{6} \\ 2 / \sqrt{6} \\ 1 / \sqrt{6}\end{array}\right], \sigma_{2}^{2}=1$ with $\boldsymbol{v}_{2}=\left[\begin{array}{c}1 / \sqrt{2} \\ 0 \\ -1 / \sqrt{2}\end{array}\right]$;
and $\boldsymbol{v}_{3}=\left[\begin{array}{r}1 / \sqrt{3} \\ -1 / \sqrt{3} \\ 1 / \sqrt{3}\end{array}\right]$. Then $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]=\left[\begin{array}{ll}\boldsymbol{u}_{1} & \boldsymbol{u}_{2}\end{array}\right]\left[\begin{array}{ccc}\sqrt{3} & 0 & 0 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{lll}\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \boldsymbol{v}_{3}\end{array}\right]^{\mathrm{T}}$.

7 The matrix A in Problem 6 had $\sigma_{1}=\sqrt{3}$ and $\sigma_{2}=1$ in Σ. The smallest change to rank 1 is to make $\sigma_{2}=\mathbf{0}$. In the factorization

$$
A=U \Sigma V^{\mathrm{T}}=\boldsymbol{u}_{1} \sigma_{1} \boldsymbol{v}_{1}^{\mathrm{T}}+\boldsymbol{u}_{2} \sigma_{2} \boldsymbol{v}_{2}^{\mathrm{T}}
$$

this change $\sigma_{2} \rightarrow 0$ will leave the closest rank -1 matrix as $\boldsymbol{u}_{1} \sigma_{1} \boldsymbol{v}_{1}^{\mathrm{T}}$. See Problem 14 for the general case of this problem.

8 The number $\sigma_{\max }\left(A^{-1}\right) \sigma_{\max }(A)$ is the same as $\sigma_{\max }(A) / \sigma_{\min }(A)$. This is certainly \geq 1. It equals 1 if all σ 's are equal, and $A=U \Sigma V^{\mathrm{T}}$ is a multiple of an orthogonal matrix. The ratio $\sigma_{\max } / \sigma_{\min }$ is the important condition number of A studied in Section 9.2.
$9 A=U V^{\mathrm{T}}$ since all $\sigma_{j}=1$, which means that $\Sigma=I$.
10 A rank-1 matrix with $A \boldsymbol{v}=12 \boldsymbol{u}$ would have \boldsymbol{u} in its column space, so $A=\boldsymbol{u} \boldsymbol{w}^{\mathrm{T}}$ for some vector \boldsymbol{w}. I intended (but didn't say) that \boldsymbol{w} is a multiple of the unit vector $\boldsymbol{v}=\frac{1}{2}(1,1,1,1)$ in the problem. Then $A=12 \boldsymbol{u} \boldsymbol{v}^{\mathrm{T}}$ to get $A \boldsymbol{v}=12 \boldsymbol{u}$ when $\boldsymbol{v}^{\mathrm{T}} \boldsymbol{v}=1$.

11 If A has orthogonal columns $\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{n}$ of lengths $\sigma_{1}, \ldots, \sigma_{n}$, then $A^{\mathrm{T}} A$ will be diagonal with entries $\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}$. So the σ 's are definitely the singular values of A (as expected). The eigenvalues of that diagonal matrix $A^{\mathrm{T}} A$ are the columns of I, so $V=I$ in the SVD. Then the \boldsymbol{u}_{i} are $A \boldsymbol{v}_{i} / \sigma_{i}$ which is the unit vector $\boldsymbol{w}_{i} / \sigma_{i}$.

The SVD of this A with orthogonal columns is $A=U \Sigma V^{\mathrm{T}}=\left(A \Sigma^{-1}\right)(\Sigma)(I)$.

12 Since $A^{\mathrm{T}}=A$ we have $\sigma_{1}^{2}=\lambda_{1}^{2}$ and $\sigma_{2}^{2}=\lambda_{2}^{2}$. But λ_{2} is negative, so $\sigma_{1}=3$ and $\sigma_{2}=2$. The unit eigenvectors of A are the same $\boldsymbol{u}_{1}=\boldsymbol{v}_{1}$ as for $A^{\mathrm{T}} A=A A^{\mathrm{T}}$ and $\boldsymbol{u}_{2}=-\boldsymbol{v}_{2}$ (notice the sign change because $\sigma_{2}=-\lambda_{2}$, as in Problem 4).

13 Suppose the SVD of R is $R=U \Sigma V^{\mathrm{T}}$. Then multiply by Q to get $A=Q R$. So the SVD of this A is $(Q U) \Sigma V^{\mathrm{T}}$. (Orthogonal Q times orthogonal $U=$ orthogonal $Q U$.)

14 The smallest change in A is to set its smallest singular value σ_{2} to zero. See \# $\mathbf{7}$.

15 The singular values of $A+I$ are not $\sigma_{j}+1$. They come from eigenvalues of $(A+I)^{\mathrm{T}}(A+I)$.

16 This simulates the random walk used by Google on billions of sites to solve $A \boldsymbol{p}=\boldsymbol{p}$. It is like the power method of Section 9.3 except that it follows the links in one "walk" where the vector $p_{k}=A^{k} p_{0}$ averages over all walks.
$17 A=U \Sigma V^{\mathrm{T}}=\left[\operatorname{cosines}\right.$ including $\left.\boldsymbol{u}_{4}\right] \operatorname{diag}(\mathbf{s q r t}(2-\sqrt{2}, 2,2+\sqrt{2}))[\text { sine matrix }]^{\mathrm{T}}$. $A V=U \Sigma$ says that differences of sines in V are cosines in U times σ 's.

The SVD of the derivative on $[0, \pi]$ with $f(0)=0$ has $\boldsymbol{u}=\sin n x, \sigma=n, \boldsymbol{v}=\cos n x$!

