INTRODUCTION

TO

LINEAR

ALGEBRA

Fifth Edition

MANUAL FOR INSTRUCTORS

Gilbert Strang

Massachusetts Institute of Technology

math.mit.edu/linearalgebra

web.mit.edu/18.06

video lectures: ocw.mit.edu

math.mit.edu/~gs

www.wellesleycambridge.com email: linearalgebrabook@gmail.com

Wellesley - Cambridge Press

Box 812060 Wellesley, Massachusetts 02482

Problem Set 4.1, page 202

- **1** Both nullspace vectors will be orthogonal to the row space vector in \mathbb{R}^3 . The column space of A and the nullspace of A^{T} are perpendicular lines in \mathbb{R}^2 because rank = 1.
- **2** The nullspace of a 3 by 2 matrix with rank 2 is **Z** (only the zero vector because the 2 columns are independent). So $x_n = 0$, and row space = \mathbb{R}^2 . Column space = plane perpendicular to left nullspace = line in \mathbb{R}^3 (because the rank is 2).

3 (a) One way is to use these two columns directly:
$$A = \begin{bmatrix} 1 & 2 & -3 \\ 2 & -3 & 1 \\ -3 & 5 & -2 \end{bmatrix}$$

(b) Impossible because $N(A)$ and $C(A^{T})$ $\begin{bmatrix} 2 \\ -3 \\ 5 \end{bmatrix}$ is not orthogonal to $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

(c)
$$\begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix}$$
 and $\begin{vmatrix} 1 \\ 0 \\ 0 \end{vmatrix}$ in $C(A)$ and $N(A^{T})$ is impossible: not perpendicular

(d) Rows orthogonal to columns makes A times $A = \text{zero matrix } \rho$. An example is $A = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$

(e) (1,1,1) in the nullspace (columns add to the zero vector) and also (1,1,1) is in the row space: no such matrix.

- 4 If AB = 0, the columns of B are in the *nullspace* of A and the rows of A are in the *left nullspace* of B. If rank = 2, all those four subspaces have dimension at least 2 which is impossible for 3 by 3.
- 5 (a) If Ax = b has a solution and A^Ty = 0, then y is perpendicular to b. b^Ty = (Ax)^Ty = x^T(A^Ty) = 0. This says again that C(A) is orthogonal to N(A^T).
 (b) If A^Ty = (1,1,1) has a solution, (1,1,1) is a combination of the rows of A. It is in the row space and is orthogonal to every x in the nullspace.

- 6 Multiply the equations by y₁, y₂, y₃ = 1, 1, -1. Now the equations add to 0 = 1 so there is no solution. In subspace language, y = (1, 1, -1) is in the left nullspace. Ax = b would need 0 = (y^TA)x = y^Tb = 1 but here y^Tb = 1.
- 7 Multiply the 3 equations by y = (1, 1, -1). Then $x_1 x_2 = 1$ plus $x_2 x_3 = 1$ minus $x_1 x_3 = 1$ is 0 = 1. Key point: This y in $N(A^T)$ is not orthogonal to b = (1, 1, 1) so b is not in the column space and Ax = b has no solution.
- 8 Figure 4.3 has $x = x_r + x_n$, where x_r is in the row space and x_n is in the nullspace. Then $Ax_n = 0$ and $Ax = Ax_r + Ax_n = Ax_r$. The example has x = (1,0) and row space = line through (1,1) so the splitting is $x = x_r + x_n = (\frac{1}{2}, \frac{1}{2}) + (\frac{1}{2}, -\frac{1}{2})$. All Ax are in C(A).
- 9 Ax is always in the column space of A. If A^TAx = 0 then Ax is also in the nullspace of A^T. Those subspaces are perpendicular. So Ax is perpendicular to itself. Conclusion: Ax = 0 if A^TAx = 0.
- 10 (a) With A^T = A, the column and row spaces are the *same*. The nullspace is always perpendicular to the row space.
 (b) x is in the nullspace and z is in the column space = row space: so these "eigenvectors" x and z have x^Tz = 0.
- 11 For A: The nullspace is spanned by (-2, 1), the row space is spanned by (1, 2). The column space is the line through (1, 3) and N(A^T) is the perpendicular line through (3, -1). For B: The nullspace of B is spanned by (0, 1), the row space is spanned by (1, 0). The column space and left nullspace are the same as for A.
- **12** x = (2,0) splits into $x_r + x_n = (1,-1) + (1,1)$. Notice $N(A^T)$ is the y z plane.
- 13 V^TW = zero matrix makes each column of V orthogonal to each column of W. This means: each basis vector for V is orthogonal to each basis vector for W. Then every v in V (combinations of the basis vectors) is orthogonal to every w in W.

14 $Ax = B\hat{x}$ means that $\begin{bmatrix} A & B \end{bmatrix} \begin{bmatrix} x \\ -\hat{x} \end{bmatrix} = 0$. Three homogeneous equations (zero right hand sides) in four unknowns always have a nonzero solution. Here x = (3, 1) and

 $\hat{x} = (1,0)$ and $Ax = B\hat{x} = (5,6,5)$ is in both column spaces. Two planes in \mathbb{R}^3 must share a line.

- 15 A p-dimensional and a q-dimensional subspace of Rⁿ share at least a line if p + q > n.
 (The p + q basis vectors of V and W cannot be independent, so same combination of the basis vectors of V is also a combination of the basis vectors of W.)
- **16** $A^{\mathrm{T}} \boldsymbol{y} = \boldsymbol{0}$ leads to $(A\boldsymbol{x})^{\mathrm{T}} \boldsymbol{y} = \boldsymbol{x}^{\mathrm{T}} A^{\mathrm{T}} \boldsymbol{y} = 0$. Then $\boldsymbol{y} \perp A\boldsymbol{x}$ and $\boldsymbol{N}(A^{\mathrm{T}}) \perp \boldsymbol{C}(A)$.
- 17 If S is the subspace of R³ containing only the zero vector, then S[⊥] is all of R³. If S is spanned by (1,1,1), then S[⊥] is the plane spanned by (1,-1,0) and (1,0,-1). If S is spanned by (1,1,1) and (1,1,-1), then S[⊥] is the line spanned by (1,-1,0).
- **18** S^{\perp} contains all vectors perpendicular to those two given vectors. So S^{\perp} is the nullspace of $A = \begin{bmatrix} 1 & 5 & 1 \\ 2 & 2 & 2 \end{bmatrix}$. Therefore S^{\perp} is a *subspace* even if S is not.
- 19 L[⊥] is the 2-dimensional subspace (a plane) in R³ perpendicular to L. Then (L[⊥])[⊥] is a 1-dimensional subspace (a line) perpendicular to L[⊥]. In fact (L[⊥])[⊥] is L.
- **20** If V is the whole space \mathbf{R}^4 , then V^{\perp} contains only the zero vector. Then $(V^{\perp})^{\perp} =$ all vectors perpendicular to the zero vector = $\mathbf{R}^4 = V$.
- **21** For example (-5, 0, 1, 1) and (0, 1, -1, 0) span S^{\perp} = nullspace of $A = \begin{bmatrix} 1 & 2 & 2 & 3 \\ 1 & 3 & 3 & 2 \end{bmatrix}$.
- **22** (1,1,1,1) is a basis for the line P^{\perp} orthogonal to P. $A = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ has P as its nullspace and P^{\perp} as its row space.
- 23 x in V[⊥] is perpendicular to every vector in V. Since V contains all the vectors in S,
 x is perpendicular to every vector in S. So every x in V[⊥] is also in S[⊥].
- **24** $AA^{-1} = I$: Column 1 of A^{-1} is orthogonal to rows 2, 3, ..., n and therefore to the space spanned by those rows.
- 25 If the columns of A are unit vectors, all mutually perpendicular, then A^TA = I. Simple but important ! We write Q for such a matrix.

26 $A = \begin{bmatrix} 2 & 2 & -1 \\ -1 & 2 & 2 \\ 2 & -1 & 2 \end{bmatrix}$, This example shows a matrix with perpendicular columns. $A^{T}A = 9I$ is *diagonal*: $(A^{T}A)_{ij} = (\text{column } i \text{ of } A) \cdot (\text{column } j \text{ of } A)$. When the columns are *unit vectors*, then $A^{T}A = I$.

- **27** The lines $3x + y = b_1$ and $6x + 2y = b_2$ are **parallel**. They are the same line if $b_2 = 2b_1$. In that case (b_1, b_2) is perpendicular to (-2, 1). The nullspace of the 2 by 2 matrix is the line 3x + y = 0. One particular vector in the nullspace is (-1, 3).
- 28 (a) (1,-1,0) is in both planes. Normal vectors are perpendicular, but planes still intersect! Two planes in R³ can't be orthogonal. (b) Need *three* orthogonal vectors to span the whole orthogonal complement in R⁵. (c) Lines in R³ can meet at the zero vector without being orthogonal.

29
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 1 & -1 \\ 2 & -1 & 0 \\ 3 & 0 & -1 \end{bmatrix}$; A has $v = (1, 2, 3)$ in row and column spaces
; B has v in its column space and nullspace.
 v can not be in the nullspace and row space,
or in the left nullspace and column space. These spaces are orthogonal and $v^{\mathrm{T}}v \neq 0$.

- **30** When AB = 0, every column of *B* is multiplied by *A* to give zero. So the column space of *B* is contained in the nullspace of *A*. Therefore the dimension of $C(B) \leq$ dimension of N(A). This means rank $(B) \leq 4 \operatorname{rank}(A)$.
- **31** null(N') produces a basis for the *row space* of A (perpendicular to N(A)).
- **32** We need $\mathbf{r}^{\mathrm{T}}\mathbf{n} = 0$ and $\mathbf{c}^{\mathrm{T}}\boldsymbol{\ell} = 0$. All possible examples have the form $a\mathbf{c}\mathbf{r}^{\mathrm{T}}$ with $a \neq 0$.
- 33 Both r's must be orthogonal to both n's, both c's must be orthogonal to both l's, each pair (r's, n's, c's, and l's) must be independent. Fact: All A's with these subspaces have the form [c₁ c₂]M[r₁ r₂]^T for a 2 by 2 invertible M.

You must take $[\boldsymbol{c}_1, \boldsymbol{c}_2]$ times $[\boldsymbol{r}_1, \boldsymbol{r}_2]^{\mathrm{T}}$.

Problem Set 4.2, page 214

1 (a)
$$a^{\mathrm{T}}b/a^{\mathrm{T}}a = 5/3$$
; $p = 5a/3 = (5/3, 5/3, 5/3)$; $e = (-2, 1, 1)/3$

- (b) $a^{\mathrm{T}}b/a^{\mathrm{T}}a = -1; p = -a; e = 0.$
- **2** (a) The projection of $\boldsymbol{b} = (\cos \theta, \sin \theta)$ onto $\boldsymbol{a} = (1,0)$ is $\boldsymbol{p} = (\cos \theta, 0)$ (b) The projection of $\boldsymbol{b} = (1,1)$ onto $\boldsymbol{a} = (1,-1)$ is $\boldsymbol{p} = (0,0)$ since $\boldsymbol{a}^{\mathrm{T}}\boldsymbol{b} = 0$.

The picture for part (a) has the vector \boldsymbol{b} at an angle θ with the horizontal \boldsymbol{a} . The picture for part (b) has vectors \boldsymbol{a} and \boldsymbol{b} at a 90° angle.

3
$$P_1 = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
 and $P_1 \boldsymbol{b} = \frac{1}{3} \begin{bmatrix} 5 \\ 5 \\ 5 \end{bmatrix}$. $P_2 = \frac{1}{11} \begin{bmatrix} 1 & 3 & 1 \\ 3 & 9 & 3 \\ 1 & 3 & 1 \end{bmatrix}$ and $P_2 \boldsymbol{b} = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$.

 $\mathbf{4} \ P_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, P_2 = \frac{\mathbf{a}\mathbf{a}^{\mathrm{T}}}{\mathbf{a}^{\mathrm{T}}\mathbf{a}} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, P_1 \text{ projects onto } (1,0), P_2 \text{ projects onto } (1,-1) \\ P_1P_2 \neq 0 \text{ and } P_1 + P_2 \text{ is not a projection matrix.} \\ (P_1 + P_2)^2 \text{ is different from } P_1 + P_2.$

5
$$P_1 = \frac{1}{9} \begin{bmatrix} 1 & -2 & -2 \\ -2 & 4 & 4 \\ -2 & 4 & 4 \end{bmatrix}$$
 and $P_2 = \frac{1}{9} \begin{bmatrix} 4 & 4 & -2 \\ 4 & 4 & -2 \\ -2 & -2 & 1 \end{bmatrix}$.

 P_1 and P_2 are the projection matrices onto the lines through $a_1 = (-1, 2, 2)$ and $a_2 = (2, 2, -1)$. $P_1P_2 = zero matrix because <math>a_1 \perp a_2$.

$$\mathbf{6} \ \mathbf{p}_{1} = (\frac{1}{9}, -\frac{2}{9}, -\frac{2}{9}) \text{ and } \mathbf{p}_{2} = (\frac{4}{9}, \frac{4}{9}, -\frac{2}{9}) \text{ and } \mathbf{p}_{3} = (\frac{4}{9}, -\frac{2}{9}, \frac{4}{9}). \text{ So } \mathbf{p}_{1} + \mathbf{p}_{2} + \mathbf{p}_{3} = \mathbf{b}.$$

$$\mathbf{7} \ P_{1} + P_{2} + P_{3} = \frac{1}{9} \begin{bmatrix} 1 & -2 & -2 \\ -2 & 4 & 4 \\ -2 & 4 & 4 \end{bmatrix} + \frac{1}{9} \begin{bmatrix} 4 & 4 & -2 \\ 4 & 4 & -2 \\ -2 & -2 & 1 \end{bmatrix} + \frac{1}{9} \begin{bmatrix} 4 & -2 & 4 \\ -2 & 1 & -2 \\ 4 & -2 & 4 \end{bmatrix} = I.$$

We *can* add projections onto *orthogonal vectors* to get the projection matrix onto the larger space. This is important.

- 8 The projections of (1, 1) onto (1, 0) and (1, 2) are p₁ = (1, 0) and p₂ = ³/₅(1, 2). Then p₁ + p₂ ≠ b. The sum of projections is not a projection onto the space spanned by (1, 0) and (1, 2) because those vectors are not orthogonal.
- **9** Since A is invertible, $P = A(A^{T}A)^{-1}A^{T}$ separates into $AA^{-1}(A^{T})^{-1}A^{T} = I$. And I is the projection matrix onto all of \mathbb{R}^{2} .

74

Solutions to Exercises

$$10 \ P_{2} = \frac{\boldsymbol{a}_{2}\boldsymbol{a}_{2}^{\mathrm{T}}}{\boldsymbol{a}_{2}^{\mathrm{T}}\boldsymbol{a}_{2}} = \begin{bmatrix} 0.2 & 0.4 \\ 0.4 & 0.8 \end{bmatrix}, P_{2}\boldsymbol{a}_{1} = \begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix}, P_{1} = \frac{\boldsymbol{a}_{1}\boldsymbol{a}_{1}^{\mathrm{T}}}{\boldsymbol{a}_{1}^{\mathrm{T}}\boldsymbol{a}_{1}} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, P_{1}P_{2}\boldsymbol{a}_{1} = \begin{bmatrix} 0.2 \\ 0 \end{bmatrix}$$

This is not $\boldsymbol{a}_{1} = (1,0)$
 $No, \boldsymbol{P_{1}P_{2}} \neq (P_{1}P_{2})^{2}.$

11 (a)
$$\boldsymbol{p} = A(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}}\boldsymbol{b} = (2,3,0), \boldsymbol{e} = (0,0,4), A^{\mathrm{T}}\boldsymbol{e} = \boldsymbol{0}$$

(b) p = (4, 4, 6) and e = 0 because b is in the column space of A.

$$12 P_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \text{projection matrix onto the column space of } A \text{ (the } xy \text{ plane)}$$

$$P_{2} = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{array}{c} \text{Projection matrix } A(A^{T}A)^{-1}A^{T} \text{ onto the second column space}} \\ \text{Certainly } (P_{2})^{2} = P_{2}. \text{ A true projection matrix.} \end{array}$$

$$13 A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, P = \text{square matrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, p = P \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 0 \end{bmatrix}.$$

14 The projection of this b onto the column space of A is b itself because b is in that column space. But P is not necessarily I. Here b = 2(column 1 of A):

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 2 \\ 2 & 0 \end{bmatrix} \text{ gives } P = \frac{1}{21} \begin{bmatrix} 5 & 8 & -4 \\ 8 & 17 & 2 \\ -4 & 2 & 20 \end{bmatrix} \text{ and } \boldsymbol{b} = P\boldsymbol{b} = \boldsymbol{p} = \begin{bmatrix} 0 \\ 2 \\ 4 \end{bmatrix}.$$

- **15** 2*A* has the same column space as *A*. Then *P* is the same for *A* and 2*A*, but \hat{x} for 2*A* is *half* of \hat{x} for *A*.
- **16** $\frac{1}{2}(1,2,-1) + \frac{3}{2}(1,0,1) = (2,1,1)$. So **b** is in the plane. Projection shows $P\mathbf{b} = \mathbf{b}$.
- 17 If $P^2 = P$ then $(I P)^2 = (I P)(I P) = I PI IP + P^2 = I P$. When *P* projects onto the column space, I - P projects onto the *left nullspace*.

- 18 (a) I P is the projection matrix onto (1, -1) in the perpendicular direction to (1, 1)
 (b) I P projects onto the plane x + y + z = 0 perpendicular to (1, 1, 1).
- $\mathbf{19} \quad \text{For any basis vectors in the plane } x y 2z = 0, \\ \text{say } (1, 1, 0) \text{ and } (2, 0, 1), \text{ the matrix } P = A(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}} \text{ is } \begin{bmatrix} 5/6 & 1/6 & 1/3 \\ 1/6 & 5/6 & -1/3 \\ 1/3 & -1/3 & 1/3 \end{bmatrix}. \\ \mathbf{20} \quad e = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}, \quad Q = \frac{ee^{\mathrm{T}}}{e^{\mathrm{T}}e} = \begin{bmatrix} 1/6 & -1/6 & -1/3 \\ -1/6 & 1/6 & 1/3 \\ -1/3 & 1/3 & 2/3 \end{bmatrix}, \quad I Q = \begin{bmatrix} 5/6 & 1/6 & 1/3 \\ 1/6 & 5/6 & -1/3 \\ 1/6 & 5/6 & -1/3 \\ 1/3 & -1/3 & 1/3 \end{bmatrix}. \\ \mathbf{21} \quad (A(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}})^{2} = A(A^{\mathrm{T}}A)^{-1}(A^{\mathrm{T}}A)(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}} = A(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}}. \text{ So } P^{2} = P.$
- **21** $(A(A^TA)^{-1}A^T) = A(A^TA)^{-1}(A^TA)(A^TA)^{-1}A^T = A(A^TA)^{-1}A^T$. So $P^2 = P$ *Pb* is in the column space (where *P* projects). Then its projection P(Pb) is also *Pb*.
- **22** $P^{\mathrm{T}} = (A(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}})^{\mathrm{T}} = A((A^{\mathrm{T}}A)^{-1})^{\mathrm{T}}A^{\mathrm{T}} = A(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}} = P.$ ($A^{\mathrm{T}}A$ is symmetric!)
- **23** If A is invertible then its column space is all of \mathbb{R}^n . So P = I and e = 0.
- **24** The nullspace of A^{T} is *orthogonal* to the column space C(A). So if $A^{T}b = 0$, the projection of b onto C(A) should be p = 0. Check $Pb = A(A^{T}A)^{-1}A^{T}b = A(A^{T}A)^{-1}0$.
- 25 The column space of P is the space that P projects onto. The column space of A always contains all outputs Ax and here the outputs Px fill the subspace S. Then rank of P = dimension of S = n.
- **26** A^{-1} exists since the rank is r = m. Multiply $A^2 = A$ by A^{-1} to get A = I.
- 27 If A^TAx = 0 then Ax is in the nullspace of A^T. But Ax is always in the column space of A. To be in both of those perpendicular spaces, Ax must be zero. So A and A^TA have the same nullspace: A^TAx = 0 exactly when Ax = 0.
- **28** $P^2 = P = P^T$ give $P^T P = P$. Then the (2, 2) entry of P equals the (2, 2) entry of $P^T P$. But the (2, 2) entry of $P^T P$ is the length squared of column 2.
- **29** $A = B^{T}$ has independent columns, so $A^{T}A$ (which is BB^{T}) must be invertible.

30 (a) The column space is the line through
$$\boldsymbol{a} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$
 so $P_C = \frac{\boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}}{\boldsymbol{a}^{\mathrm{T}}\boldsymbol{a}} = \frac{1}{25} \begin{bmatrix} 9 & 12 \\ 12 & 16 \end{bmatrix}$.

The formula $P = A(A^{T}A)^{-1}A^{T}$ needs independent columns—this A has dependent columns. The update formula is correct.

- (b) The row space is the line through v = (1, 2, 2) and $P_R = vv^T/v^T v$. Always $P_C A = A$ (columns of A project to themselves) and $AP_R = A$. Then $P_C AP_R = A$.
- **31** *Test*: The error e = b p must be perpendicular to all the *a*'s.
- **32** Since $P_1 \boldsymbol{b}$ is in $\boldsymbol{C}(A)$ and P_2 projects onto that column space, $P_2(P_1 \boldsymbol{b})$ equals $P_1 \boldsymbol{b}$. So $P_2 P_1 = P_1 = \boldsymbol{a} \boldsymbol{a}^T / \boldsymbol{a}^T \boldsymbol{a}$ where $\boldsymbol{a} = (1, 2, 0)$.
- **33** Each b_1 to b_{99} is multiplied by $\frac{1}{999} \frac{1}{1000} \left(\frac{1}{999}\right) = \frac{999}{1000} \frac{1}{999} = \frac{1}{1000}$. The last pages of the book discuss least squares and the Kalman filter.

Problem Set 4.3, page 229

-

$$\mathbf{1} \ A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 3 \\ 1 & 4 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 0 \\ 8 \\ 8 \\ 20 \end{bmatrix} \text{ give } A^{\mathrm{T}}A = \begin{bmatrix} 4 & 8 \\ 8 & 26 \end{bmatrix} \text{ and } A^{\mathrm{T}}\mathbf{b} = \begin{bmatrix} 36 \\ 112 \end{bmatrix}.$$

$$A^{\mathrm{T}}A\widehat{\mathbf{x}} = A^{\mathrm{T}}\mathbf{b} \text{ gives } \widehat{\mathbf{x}} = \begin{bmatrix} 1 \\ 4 \end{bmatrix} \text{ and } \mathbf{p} = A\widehat{\mathbf{x}} = \begin{bmatrix} 1 \\ 5 \\ 13 \\ 17 \end{bmatrix} \text{ and } \mathbf{e} = \mathbf{b} - \mathbf{p} = \begin{bmatrix} -1 \\ 3 \\ -5 \\ 3 \end{bmatrix}$$

$$\mathbf{2} \ \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 0 \\ 8 \\ 8 \\ 20 \end{bmatrix}. \text{ This } A\mathbf{x} = \mathbf{b} \text{ is unsolvable} \text{ Project } \mathbf{b} \text{ to } \mathbf{p} = P\mathbf{b} = \begin{bmatrix} 1 \\ 5 \\ 13 \\ 17 \end{bmatrix}; \text{ When } \mathbf{p} \text{ replaces } \mathbf{b},$$

$$\widehat{\mathbf{x}} = \begin{bmatrix} 1 \\ 4 \end{bmatrix} \text{ exactly solves } A\widehat{\mathbf{x}} = \mathbf{p}.$$

3 In Problem 2, $\boldsymbol{p} = A(A^{T}A)^{-1}A^{T}\boldsymbol{b} = (1, 5, 13, 17)$ and $\boldsymbol{e} = \boldsymbol{b} - \boldsymbol{p} = (-1, 3, -5, 3)$. This \boldsymbol{e} is perpendicular to both columns of A. This shortest distance $\|\boldsymbol{e}\|$ is $\sqrt{44}$.

- $4 \ E = (C + 0D)^2 + (C + 1D 8)^2 + (C + 3D 8)^2 + (C + 4D 20)^2.$ Then $\frac{\partial E}{\partial C} = 2C + 2(C + D - 8) + 2(C + 3D - 8) + 2(C + 4D - 20) = 0 \text{ and}$ $\frac{\partial E}{\partial D} = 1 \cdot 2(C + D - 8) + 3 \cdot 2(C + 3D - 8) + 4 \cdot 2(C + 4D - 20) = 0.$ These two normal equations are again $\begin{bmatrix} 4 & 8 \\ 8 & 26 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 36 \\ 112 \end{bmatrix}.$
- **5** $E = (C-0)^2 + (C-8)^2 + (C-8)^2 + (C-20)^2$. $A^{T} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$ and $A^{T}A = \begin{bmatrix} 4 \end{bmatrix}$. $A^{T}b = \begin{bmatrix} 36 \end{bmatrix}$ and $(A^{T}A)^{-1}A^{T}b = 9$ = best height C for the horizontal line. Errors e = b - p = (-9, -1, -1, 11) still add to zero.
- **6** a = (1, 1, 1, 1) and b = (0, 8, 8, 20) give $\hat{x} = a^{T}b/a^{T}a = 9$ and the projection is $\hat{x}a = p = (9, 9, 9, 9)$. Then $e^{T}a = (-9, -1, -1, 11)^{T}(1, 1, 1, 1) = 0$ and the shortest distance from b to the line through a is $||e|| = \sqrt{204}$.
- 7 Now the 4 by 1 matrix in Ax = b is $A = \begin{bmatrix} 0 & 1 & 3 & 4 \end{bmatrix}^{T}$. Then $A^{T}A = \begin{bmatrix} 26 \end{bmatrix}$ and $A^{T}b = \begin{bmatrix} 112 \end{bmatrix}$. Best $D = \frac{112}{26} = \frac{56}{13}$.
- 8 $\hat{x} = a^{T}b/a^{T}a = 56/13$ and p = (56/13)(0, 1, 3, 4). (C, D) = (9, 56/13) don't match (C, D) = (1, 4) from Problems 1-4. Columns of A were not perpendicular so we can't project separately to find C and D.

Parabola
$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 3 & 9 \\ 4D \text{ to } 3D \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \end{bmatrix} \begin{bmatrix} C \\ D \\ E \end{bmatrix} = \begin{bmatrix} 0 \\ 8 \\ 8 \\ 20 \end{bmatrix}$$
 $A^{T}A\widehat{x} = \begin{bmatrix} 4 & 8 & 26 \\ 8 & 26 & 92 \\ 26 & 92 & 338 \end{bmatrix} \begin{bmatrix} C \\ D \\ E \end{bmatrix} = \begin{bmatrix} 36 \\ 112 \\ 400 \end{bmatrix}$

Figure 4.9 (a) is fitting 4 points and 4.9 (b) is a projection in \mathbb{R}^4 : same problem !

 $\mathbf{10} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \end{bmatrix} \begin{bmatrix} C \\ D \\ E \\ F \end{bmatrix} = \begin{bmatrix} 0 \\ 8 \\ 8 \\ 20 \end{bmatrix}. \text{ Then } \begin{bmatrix} C \\ D \\ E \\ F \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 0 \\ 47 \\ -28 \\ 5 \end{bmatrix}. \text{ Exact cubic so } p = b, e = 0.$ This Vandermonde matrix gives exact interpolation by a cubic at 0, 1, 3, 4

11 (a) The best line x = 1 + 4t gives the center point b

= 9 at center time, t

= 2.
(b) The first equation Cm + D∑ t_i = ∑ b_i divided by m gives C + Dt

= b

time t

78

12 (a) $\boldsymbol{a} = (1, \dots, 1)$ has $\boldsymbol{a}^{\mathrm{T}} \boldsymbol{a} = m$, $\boldsymbol{a}^{\mathrm{T}} \boldsymbol{b} = b_1 + \dots + b_m$. Therefore $\hat{\boldsymbol{x}} = \boldsymbol{a}^{\mathrm{T}} \boldsymbol{b} / m$ is the **mean** of the *b*'s (their average value)

(b) $e = b - \hat{x}a$ and $||e||^2 = (b_1 - \text{mean})^2 + \cdots + (b_m - \text{mean})^2 = \text{variance}$ (denoted by σ^2).

(c)
$$\boldsymbol{p} = (3, 3, 3)$$
 and $\boldsymbol{e} = (-2, -1, 3) \boldsymbol{p}^{\mathrm{T}} \boldsymbol{e} = 0$. Projection matrix $P = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.

- **13** $(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}}(\boldsymbol{b}-A\boldsymbol{x}) = \hat{\boldsymbol{x}} \boldsymbol{x}$. This tells us: When the components of $A\boldsymbol{x} \boldsymbol{b}$ add to zero, so do the components of $\widehat{x} - x$: Unbiased.
- 14 The matrix $(\widehat{\boldsymbol{x}} \boldsymbol{x})(\widehat{\boldsymbol{x}} \boldsymbol{x})^{\mathrm{T}}$ is $(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}}(\boldsymbol{b} A\boldsymbol{x})(\boldsymbol{b} A\boldsymbol{x})^{\mathrm{T}}A(A^{\mathrm{T}}A)^{-1}$. When the average of $(\boldsymbol{b} - A\boldsymbol{x})(\boldsymbol{b} - A\boldsymbol{x})^{\mathrm{T}}$ is $\sigma^2 I$, the average of $(\widehat{\boldsymbol{x}} - \boldsymbol{x})(\widehat{\boldsymbol{x}} - \boldsymbol{x})^{\mathrm{T}}$ will be the $\textit{output covariance matrix} (A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}}\sigma^{2}A(A^{\mathrm{T}}A)^{-1} \text{ which simplifies to } \sigma^{2}(A^{\mathrm{T}}A)^{-1}.$ That gives the average of the squared output errors $\hat{x} - x$.
- 15 When A has 1 column of 4 ones, Problem 14 gives the expected error $(\widehat{x} x)^2$ as $\sigma^2 (A^{\rm T} A)^{-1} = \sigma^2/4$. By taking m measurements, the variance drops from σ^2 to σ^2/m . This leads to the Monte Carlo method in Section 12.1.

16
$$\frac{1}{10}b_{10} + \frac{9}{10}\hat{x}_9 = \frac{1}{10}(b_1 + \dots + b_{10})$$
. Knowing \hat{x}_9 avoids adding all ten b's.
17 $\begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 7 \\ 7 \\ 21 \end{bmatrix}$. The solution $\hat{x} = \begin{bmatrix} 9 \\ 4 \end{bmatrix}$ comes from $\begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$.

- 18 $p = A\hat{x} = (5, 13, 17)$ gives the heights of the closest line. The vertical errors are b - p = (2, -6, 4). This error *e* has Pe = Pb - Pp = p - p = 0.
- **19** If b = error e then b is perpendicular to the column space of A. Projection p = 0.
- **20** The matrix A has columns 1, 1, 1 and -1, 1, 2. If $\boldsymbol{b} = A\hat{\boldsymbol{x}} = (5, 13, 17)$ then $\hat{\boldsymbol{x}} = (9, 4)$ and e = 0 since b = 9 (column 1) + 4 (column 2) is in the column space of A.

Г

21 e is in $N(A^{T})$; p is in C(A); \hat{x} is in $C(A^{T})$; $N(A) = \{0\}$ = zero vector only.

22 The least squares equation is $\begin{bmatrix} 5 & \mathbf{0} \\ \mathbf{0} & 10 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 5 \\ -10 \end{bmatrix}$. Solution: C = 1, D = -1. The best line is b = 1 - t. Symmetric t's \Rightarrow diagonal $A^{\mathrm{T}}A \Rightarrow$ easy solution.

- **23** \boldsymbol{e} is orthogonal to \boldsymbol{p} in \mathbf{R}^m ; then $\|\boldsymbol{e}\|^2 = e^{\mathrm{T}}(\boldsymbol{b} \boldsymbol{p}) = \boldsymbol{e}^{\mathrm{T}}\boldsymbol{b} = \boldsymbol{b}^{\mathrm{T}}\boldsymbol{b} \boldsymbol{b}^{\mathrm{T}}\boldsymbol{p}$.
- **24** The derivatives of $||A\boldsymbol{x} \boldsymbol{b}||^2 = \boldsymbol{x}^T A^T A \boldsymbol{x} 2\boldsymbol{b}^T A \boldsymbol{x} + \boldsymbol{b}^T \boldsymbol{b}$ (this last term is constant) are zero when $2A^T A \boldsymbol{x} = 2A^T \boldsymbol{b}$, or $\boldsymbol{x} = (A^T A)^{-1} A^T \boldsymbol{b}$.

25 3 points on a linewill give equal slopes $(b_2 - b_1)/(t_2 - t_1) = (b_3 - b_2)/(t_3 - t_2)$. Linear algebra: Orthogonal to the columns (1, 1, 1) and (t_1, t_2, t_3) is $\boldsymbol{y} = (t_2 - t_3, t_3 - t_1, t_1 - t_2)$ in the left nullspace of A. **b** is in the column space ! Then $\boldsymbol{y}^T \boldsymbol{b} = 0$ is the same equal slopes condition written as $(b_2 - b_1)(t_3 - t_2) = (b_3 - b_2)(t_2 - t_1)$.

The unsolvable
equations for

$$C + Dx + Ey = (0, 1, 3, 4)$$

at the 4 corners are

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} C \\ D \\ E \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 3 \\ 4 \end{bmatrix}$$
. Then $A^{T}A = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$
and $A^{T}b = \begin{bmatrix} 8 \\ -2 \\ -3 \end{bmatrix}$ and $\begin{bmatrix} C \\ D \\ E \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ -3/2 \end{bmatrix}$. At $x, y = 0, 0$ the best plane $2 - x - \frac{3}{2}y$
has height $C = \mathbf{2}$ = average of $0, 1, 3, 4$.

- 27 The shortest link connecting two lines in space is *perpendicular to those lines*.
- **28** If A has dependent columns, then $A^{T}A$ is not invertable and the usual formula $P = A(A^{T}A)^{-1}A^{T}$ will fail. Replace A in that formula by the matrix B that keeps *only the pivot columns of A*.
- 29 Only 1 plane contains 0, a₁, a₂ unless a₁, a₂ are *dependent*. Same test for a₁,..., a_{n-1}. If they are dependent, there is a vector v perpendicular to all the a's. Then they all lie on the plane v^Tx = 0 going through x = (0, 0, ..., 0).

30 When A has orthogonal columns (1, ..., 1) and $(T_1, ..., T_m)$, the matrix $A^T A$ is **diagonal** with entries m and $T_1^2 + \cdots + T_m^2$. Also $A^T b$ has entries $b_1 + \cdots + b_m$ and $T_1 b_1 + \cdots + T_m b_m$. The solution with that diagonal $A^T A$ is just the given $\hat{x} = (C, D)$.

Problem Set 4.4, page 242

- **1** (a) Independent (b) Independent and orthogonal (c) Independent and orthonormal. For orthonormal vectors, (a) becomes (1,0), (0,1) and (b) is (.6,.8), (.8,-.6).
- $\mathbf{2} \quad \begin{array}{l} \text{Divide by length 3 to get} \\ \mathbf{q}_1 = (\frac{2}{3}, \frac{2}{3}, -\frac{1}{3}). \ \mathbf{q}_2 = (-\frac{1}{3}, \frac{2}{3}, \frac{2}{3}). \end{array} \quad Q^{\mathrm{T}}Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{but } QQ^{\mathrm{T}} = \begin{bmatrix} 5/9 & 2/9 & -4/9 \\ 2/9 & 8/9 & 2/9 \\ -4/9 & 2/9 & 5/9 \end{bmatrix}.$

3 (a) $A^{T}A$ will be 16I (b) $A^{T}A$ will be diagonal with entries $1^{2}, 2^{2}, 3^{2} = 1, 4, 9$.

4 (a) $Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$, $QQ^{\mathrm{T}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \neq I$. Any Q with n < m has $QQ^{\mathrm{T}} \neq I$.

(b) (1,0) and (0,0) are *orthogonal*, not *independent*. Nonzero orthogonal vectors *are* independent. (c) From $q_1 = (1,1,1)/\sqrt{3}$ my favorite is $q_2 = (1,-1,0)/\sqrt{2}$ and $q_3 = (1,1,-2)/\sqrt{6}$.

- **5** Orthogonal vectors are (1, -1, 0) and (1, 1, -1). Orthonormal after dividing by their lengths: $\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right)$ and $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)$.
- **6** $Q_1 Q_2$ is orthogonal because $(Q_1 Q_2)^T Q_1 Q_2 = Q_2^T Q_1^T Q_1 Q_2 = Q_2^T Q_2 = I$.
- 7 When Gram-Schmidt gives Q with orthonormal columns, $Q^{T}Q\hat{x} = Q^{T}b$ becomes $\hat{x} = Q^{T}b$. No cost to solve the normal equations !

8 If q_1 and q_2 are *orthonormal* vectors in \mathbf{R}^5 then $\mathbf{p} = (\mathbf{q}_1^T \mathbf{b})\mathbf{q}_1 + (\mathbf{q}_2^T \mathbf{b})\mathbf{q}_2$ is closest to \mathbf{b} . The error $\mathbf{e} = \mathbf{b} - \mathbf{p}$ is orthogonal to \mathbf{q}_1 and \mathbf{q}_2 .

9 (a) $Q = \begin{bmatrix} .8 & -.6 \\ .6 & .8 \\ 0 & 0 \end{bmatrix}$ has $P = QQ^{T} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ = projection on the *xy* plane.

Solutions to Exercises

(b)
$$(QQ^{T})(QQ^{T}) = Q(Q^{T}Q)Q^{T} = QQ^{T}$$
.

- **10** (a) If q_1, q_2, q_3 are *orthonormal* then the dot product of q_1 with $c_1q_1 + c_2q_2 + c_3q_3 =$ **0** gives $c_1 = 0$. Similarly $c_2 = c_3 = 0$. This proves : *Independent* q's
 - (b) $Q\mathbf{x} = \mathbf{0}$ leads to $Q^{\mathrm{T}}Q\mathbf{x} = \mathbf{0}$ which says $\mathbf{x} = \mathbf{0}$.
- **11** (a) Two *orthonormal* vectors are $q_1 = \frac{1}{10}(1, 3, 4, 5, 7)$ and $q_2 = \frac{1}{10}(-7, 3, 4, -5, 1)$
 - (b) Closest projection in the plane = projection $QQ^{T}(1, 0, 0, 0, 0) = (0.5, -0.18, -0.24, 0.4, 0)$.
- **12** (a) Orthonormal *a*'s: $a_1^{\mathrm{T}}b = a_1^{\mathrm{T}}(x_1a_1 + x_2a_2 + x_3a_3) = x_1(a_1^{\mathrm{T}}a_1) = x_1$
 - (b) Orthogonal **a**'s: $a_1^T b = a_1^T (x_1 a_1 + x_2 a_2 + x_3 a_3) = x_1 (a_1^T a_1)$. Therefore $x_1 = a_1^T b / a_1^T a_1$
 - (c) x_1 is the first component of A^{-1} times **b** (A is 3 by 3 and invertible).
- **13** The multiple to subtract is $\frac{a^{\mathrm{T}}b}{a^{\mathrm{T}}a}$. Then $B = b \frac{a^{\mathrm{T}}b}{a^{\mathrm{T}}a}a = \begin{bmatrix} 4\\0 \end{bmatrix} 2\begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} 2\\0 \end{bmatrix}$.

$$\begin{bmatrix} -2 \end{bmatrix}$$

$$\mathbf{14} \begin{bmatrix} 1 & 4 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 \end{bmatrix} \begin{bmatrix} \|\mathbf{a}\| & \mathbf{q}_1^{\mathrm{T}}\mathbf{b} \\ 0 & \|\mathbf{B}\| \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} \sqrt{2} & 2\sqrt{2} \\ 0 & 2\sqrt{2} \end{bmatrix} = QR.$$

15 (a) Gram-Schmidt chooses $q_1 = a/||a|| = \frac{1}{3}(1, 2, -2)$ and $q_2 = \frac{1}{3}(2, 1, 2)$. Then $q_3 = \frac{1}{3}(2, -2, -1)$.

(b) The nullspace of A^{T} contains q_3

(c)
$$\widehat{\boldsymbol{x}} = (A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}}(1,2,7) = (1,2).$$

- **16** $p = (a^T b/a^T a)a = 14a/49 = 2a/7$ is the projection of **b** onto **a**. $q_1 = a/||a|| = a/7$ is (4, 5, 2, 2)/7. B = b p = (-1, 4, -4, -4)/7 has ||B|| = 1 so $q_2 = B$.
- **17** $p = (a^{T}b/a^{T}a)a = (3,3,3)$ and e = (-2,0,2). Then Gram-Schmidt will choose $q_1 = (1,1,1)/\sqrt{3}$ and $q_2 = (-1,0,1)/\sqrt{2}$.
- **18** $A = a = (1, -1, 0, 0); B = b p = (\frac{1}{2}, \frac{1}{2}, -1, 0); C = c p_A p_B = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, -1).$ Notice the pattern in those orthogonal A, B, C. In \mathbb{R}^5, D would be $(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, -1).$

Gram-Schmidt would go on to normalize $q_1 = A/||A||, q_2 = B/||B||, q_3 = C/||C||.$

82

Solutions to Exercises

19 If A = QR then $A^{T}A = R^{T}Q^{T}QR = R^{T}R = lower$ triangular times *upper* triangular (this Cholesky factorization of $A^{T}A$ uses the same R as Gram-Schmidt!). The example

has
$$A = \begin{bmatrix} -1 & 1 \\ 2 & 1 \\ 2 & 4 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} -1 & 2 \\ 2 & -1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 3 \\ 0 & 3 \end{bmatrix} = QR$$
 and the same R appears in
 $A^{T}A = \begin{bmatrix} 9 & 9 \\ 9 & 18 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} 3 & 3 \\ 0 & 3 \end{bmatrix} = R^{T}R.$

- **20** (a) *True* because $Q^{T}Q = I$ leads to $(Q^{-1})(Q^{-1}) = I$.
 - (b) *True*. $Qx = x_1q_1 + x_2q_2$. $||Qx||^2 = x_1^2 + x_2^2$ because $q_1 \cdot q_2 = 0$. Also $||Qx||^2 = x^T Q^T Qx = x^T x$.
- **21** The orthonormal vectors are $q_1 = (1, 1, 1, 1)/2$ and $q_2 = (-5, -1, 1, 5)/\sqrt{52}$. Then b = (-4, -3, 3, 0) projects to $p = (q_1^T b)q_1 + (q_2^T b)q_2 = (-7, -3, -1, 3)/2$. And b p = (-1, -3, 7, -3)/2 is orthogonal to both q_1 and q_2 .
- **22** A = (1, 1, 2), B = (1, -1, 0), C = (-1, -1, 1). These are not yet unit vectors. As in Problem 18, Gram-Schmidt will divide by ||A|| and ||B|| and ||C||.

23 You can see why
$$q_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $q_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, $q_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$. $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 \\ 0 & 3 & 6 \\ 0 & 0 & 5 \end{bmatrix} = QR$. This Q is just a permutation matrix—certainly orthogonal.

- **24** (a) One basis for the subspace S of solutions to $x_1 + x_2 + x_3 x_4 = 0$ is the 3 special solutions $v_1 = (-1, 1, 0, 0), v_2 = (-1, 0, 1, 0), v_3 = (1, 0, 0, 1)$
 - (b) Since S contains solutions to $(1, 1, 1, -1)^T x = 0$, a basis for S^{\perp} is (1, 1, 1, -1)
 - (c) Split (1, 1, 1, 1) into $\boldsymbol{b}_1 + \boldsymbol{b}_2$ by projection on \boldsymbol{S}^{\perp} and \boldsymbol{S} : $\boldsymbol{b}_2 = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2})$ and $\boldsymbol{b}_1 = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{3}{2})$.
- **25** This question shows 2 by 2 formulas for QR; breakdown $R_{22} = 0$ for singular A. Nonsingular example $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} \cdot \frac{1}{\sqrt{5}} \begin{bmatrix} 5 & 3 \\ 0 & 1 \end{bmatrix}$.

Singular example $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \cdot \frac{1}{\sqrt{2}} \begin{bmatrix} 2 & 2 \\ 0 & 0 \end{bmatrix}$. The Gram-Schmidt process breaks down when ad - bc = 0.

26
$$(q_2^{\mathrm{T}}C^*)q_2 = \frac{B^{\mathrm{T}}c}{B^{\mathrm{T}}B}B$$
 because $q_2 = \frac{B}{\|B\|}$ and the extra q_1 in C^* is orthogonal to q_2 .

- 27 When a and b are not orthogonal, the projections onto these lines do not add to the projection onto the plane of a and b. We must use the orthogonal A and B (or orthonormal q₁ and q₂) to be allowed to add projections on those lines.
- **28** There are $\frac{1}{2}m^2n$ multiplications to find the numbers r_{kj} and the same for v_{ij} .
- **29** $q_1 = \frac{1}{3}(2, 2, -1), q_2 = \frac{1}{3}(2, -1, 2), q_3 = \frac{1}{3}(1, -2, -2).$
- **30** The columns of the wavelet matrix W are *orthonormal*. Then $W^{-1} = W^{T}$. This is a useful orthonormal basis with many zeros.
- **31** (a) $c = \frac{1}{2}$ normalizes all the orthogonal columns to have unit length (b) The projection $(a^{T}b/a^{T}a)a$ of b = (1, 1, 1, 1) onto the first column is $p_{1} = \frac{1}{2}(-1, 1, 1, 1)$. (Check e = 0.) To project onto the plane, add $p_{2} = \frac{1}{2}(1, -1, 1, 1)$ to get (0, 0, 1, 1).

32
$$Q_1 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 reflects across x axis, $Q_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix}$ across plane $y + z = 0$.

- **33** Orthogonal and lower triangular $\Rightarrow \pm 1$ on the main diagonal and zeros elsewhere.
- 34 (a) Qu = (I 2uu^T)u = u 2uu^Tu. This is -u, provided that u^Tu equals 1
 (b) Qv = (I 2uu^T)v = u 2uu^Tv = u, provided that u^Tv = 0.
- **35** Starting from A = (1, -1, 0, 0), the orthogonal (not orthonormal) vectors B = (1, 1, -2, 0) and C = (1, 1, 1, -3) and D = (1, 1, 1, 1) are in the directions of q_2, q_3, q_4 . The 4 by 4 and 5 by 5 matrices with *integer orthogonal columns* (not orthogonal rows, since not orthonormal Q!) are

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} & \mathbf{D} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ 0 & -2 & 1 & 1 \\ 0 & 0 & -3 & 1 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 & 1 \\ 0 & -2 & 1 & 1 & 1 \\ 0 & 0 & -3 & 1 & 1 \\ 0 & 0 & 0 & -4 & 1 \end{bmatrix}$$

- **36** [Q, R] = qr(A) produces from A (m by n of rank n) a "full-size" square $Q = [Q_1 \ Q_2]$ and $\begin{bmatrix} R \\ 0 \end{bmatrix}$. The columns of Q_1 are the orthonormal basis from Gram-Schmidt of the column space of A. The m - n columns of Q_2 are an orthonormal basis for the left nullspace of A. Together the columns of $Q = [Q_1 \ Q_2]$ are an orthonormal basis for \mathbf{R}^m .
- **37** This question describes the next q_{n+1} in Gram-Schmidt using the matrix Q with the columns q_1, \ldots, q_n (instead of using those q's separately). Start from a, subtract its projection $p = QQ^T a$ onto the earlier q's, divide by the length of $e = a QQ^T a$ to get the next $q_{n+1} = e/||e||$.