INTRODUCTION

LINEAR

 ALGEBRAFifth Edition

MANUAL FOR INSTRUCTORS

Gilbert Strang

Massachusetts Institute of Technology
math.mit.edu/linearalgebra
web.mit.edu/18.06
video lectures: ocw.mit.edu
math.mit.edu/~gs
www.wellesleycambridge.com email: linearalgebrabook @ gmail.com

Wellesley - Cambridge Press
Box 812060
Wellesley, Massachusetts 02482

Problem Set 4.1, page 202

1 Both nullspace vectors will be orthogonal to the row space vector in \mathbf{R}^{3}. The column space of A and the nullspace of A^{T} are perpendicular lines in \mathbf{R}^{2} because rank $=1$.

2 The nullspace of a 3 by 2 matrix with rank 2 is \mathbf{Z} (only the zero vector because the 2 columns are independent). So $\boldsymbol{x}_{n}=\mathbf{0}$, and row space $=\mathbf{R}^{2}$. Column space $=$ plane perpendicular to left nullspace $=$ line in \mathbf{R}^{3} (because the rank is 2).
3 (a) One way is to use these two columns directly: $A=\left[\begin{array}{rrr}1 & 2 & -3 \\ 2 & -3 & 1 \\ -3 & 5 & -2\end{array}\right]$
(b) $\left.\begin{array}{l}\text { Impossible because } \boldsymbol{N}(A) \text { and } \boldsymbol{C}\left(A^{\mathrm{T}}\right) \\ \text { are orthogonal subspaces : }\end{array} \begin{array}{r}2 \\ -3 \\ 5\end{array}\right]$ is not orthogonal to $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
(c) $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ in $\boldsymbol{C}(A)$ and $\boldsymbol{N}\left(A^{\mathrm{T}}\right)$ is impossible: not perpendicular
(d) Rows orthogonal to columns makes A times $A=$ zero matrix ρ. An example is $A=$ $\left[\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right]$
(e) $(1,1,1)$ in the nullspace (columns add to the zero vector) and also $(1,1,1)$ is in the row space: no such matrix.

4 If $A B=0$, the columns of B are in the nullspace of A and the rows of A are in the left nullspace of B. If rank $=2$, all those four subspaces have dimension at least 2 which is impossible for 3 by 3 .

5 (a) If $A \boldsymbol{x}=\boldsymbol{b}$ has a solution and $A^{\mathrm{T}} \boldsymbol{y}=\mathbf{0}$, then \boldsymbol{y} is perpendicular to $\boldsymbol{b} . \boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}=$ $(A \boldsymbol{x})^{\mathrm{T}} \boldsymbol{y}=\boldsymbol{x}^{\mathrm{T}}\left(A^{\mathrm{T}} \boldsymbol{y}\right)=0$. This says again that $\boldsymbol{C}(A)$ is orthogonal to $\boldsymbol{N}\left(A^{\mathrm{T}}\right)$. (b) If $A^{\mathrm{T}} \boldsymbol{y}=(1,1,1)$ has a solution, $(1,1,1)$ is a combination of the rows of A. It is in the row space and is orthogonal to every \boldsymbol{x} in the nullspace.

6 Multiply the equations by $y_{1}, y_{2}, y_{3}=1,1,-1$. Now the equations add to $0=1$ so there is no solution. In subspace language, $\boldsymbol{y}=(1,1,-1)$ is in the left nullspace. $A \boldsymbol{x}=\boldsymbol{b}$ would need $0=\left(\boldsymbol{y}^{\mathrm{T}} A\right) \boldsymbol{x}=\boldsymbol{y}^{\mathrm{T}} \boldsymbol{b}=1$ but here $\boldsymbol{y}^{\mathrm{T}} \boldsymbol{b}=1$.

7 Multiply the 3 equations by $\boldsymbol{y}=(1,1,-1)$. Then $x_{1}-x_{2}=1$ plus $x_{2}-x_{3}=1$ minus $x_{1}-x_{3}=1$ is $0=1$. Key point: This \boldsymbol{y} in $\boldsymbol{N}\left(A^{\mathrm{T}}\right)$ is not orthogonal to $\boldsymbol{b}=(1,1,1)$ so \boldsymbol{b} is not in the column space and $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ has no solution.

8 Figure 4.3 has $\boldsymbol{x}=\boldsymbol{x}_{r}+\boldsymbol{x}_{n}$, where \boldsymbol{x}_{r} is in the row space and \boldsymbol{x}_{n} is in the nullspace. Then $A \boldsymbol{x}_{n}=\mathbf{0}$ and $A \boldsymbol{x}=A \boldsymbol{x}_{r}+A \boldsymbol{x}_{n}=A \boldsymbol{x}_{r}$. The example has $\boldsymbol{x}=(1,0)$ and row space $=$ line through $(1,1)$ so the splitting is $\boldsymbol{x}=\boldsymbol{x}_{r}+\boldsymbol{x}_{n}=\left(\frac{1}{2}, \frac{1}{2}\right)+\left(\frac{1}{2},-\frac{1}{2}\right)$. All $A \boldsymbol{x}$ are in $\boldsymbol{C}(A)$.
$9 A \boldsymbol{x}$ is always in the column space of A. If $A^{\mathrm{T}} A \boldsymbol{x}=\mathbf{0}$ then $A \boldsymbol{x}$ is also in the nullspace of A^{T}. Those subspaces are perpendicular. So $A \boldsymbol{x}$ is perpendicular to itself. Conclusion: $A \boldsymbol{x}=\mathbf{0}$ if $A^{\mathrm{T}} A \boldsymbol{x}=\mathbf{0}$.

10 (a) With $A^{\mathrm{T}}=A$, the column and row spaces are the same. The nullspace is always perpendicular to the row space. (b) \boldsymbol{x} is in the nullspace and \boldsymbol{z} is in the column space $=$ row space: so these "eigenvectors" \boldsymbol{x} and \boldsymbol{z} have $\boldsymbol{x}^{\mathrm{T}} \boldsymbol{z}=0$.

11 For \boldsymbol{A} : The nullspace is spanned by $(-2,1)$, the row space is spanned by $(1,2)$. The column space is the line through $(1,3)$ and $\boldsymbol{N}\left(A^{\mathrm{T}}\right)$ is the perpendicular line through $(3,-1)$. For \boldsymbol{B} : The nullspace of B is spanned by $(0,1)$, the row space is spanned by $(1,0)$. The column space and left nullspace are the same as for A.
$12 \boldsymbol{x}=(2,0)$ splits into $\boldsymbol{x}_{r}+\boldsymbol{x}_{n}=(1,-1)+(1,1)$. Notice $\boldsymbol{N}\left(A^{\mathrm{T}}\right)$ is the $y-z$ plane.
$13 V^{\mathrm{T}} W=$ zero matrix makes each column of V orthogonal to each column of W. This means: each basis vector for \boldsymbol{V} is orthogonal to each basis vector for \boldsymbol{W}. Then every \boldsymbol{v} in \boldsymbol{V} (combinations of the basis vectors) is orthogonal to every \boldsymbol{w} in \boldsymbol{W}.
$14 A \boldsymbol{x}=B \widehat{\boldsymbol{x}}$ means that $\left[\begin{array}{ll}A & B\end{array}\right]\left[\begin{array}{r}\boldsymbol{x} \\ -\widehat{\boldsymbol{x}}\end{array}\right]=\mathbf{0}$. Three homogeneous equations (zero right hand sides) in four unknowns always have a nonzero solution. Here $\boldsymbol{x}=(3,1)$ and
$\widehat{\boldsymbol{x}}=(1,0)$ and $A \boldsymbol{x}=B \widehat{\boldsymbol{x}}=(5,6,5)$ is in both column spaces. Two planes in \mathbf{R}^{3} must share a line.

15 A p-dimensional and a q-dimensional subspace of \mathbf{R}^{n} share at least a line if $\boldsymbol{p}+\boldsymbol{q}>\boldsymbol{n}$. (The $p+q$ basis vectors of \boldsymbol{V} and \boldsymbol{W} cannot be independent, so same combination of the basis vectors of \boldsymbol{V} is also a combination of the basis vectors of \boldsymbol{W}.)
$16 A^{\mathrm{T}} \boldsymbol{y}=\mathbf{0}$ leads to $(A \boldsymbol{x})^{\mathrm{T}} \boldsymbol{y}=\boldsymbol{x}^{\mathrm{T}} A^{\mathrm{T}} \boldsymbol{y}=0$. Then $\boldsymbol{y} \perp A \boldsymbol{x}$ and $\boldsymbol{N}\left(A^{\mathrm{T}}\right) \perp \boldsymbol{C}(A)$.
17 If S is the subspace of \mathbf{R}^{3} containing only the zero vector, then S^{\perp} is all of \mathbf{R}^{3}. If \boldsymbol{S} is spanned by $(1,1,1)$, then \boldsymbol{S}^{\perp} is the plane spanned by $(1,-1,0)$ and $(1,0,-1)$. If \boldsymbol{S} is spanned by $(1,1,1)$ and $(1,1,-1)$, then \boldsymbol{S}^{\perp} is the line spanned by $(1,-1,0)$.
$18 S^{\perp}$ contains all vectors perpendicular to those two given vectors. So S^{\perp} is the nullspace of $A=\left[\begin{array}{lll}1 & 5 & 1 \\ 2 & 2 & 2\end{array}\right]$. Therefore \boldsymbol{S}^{\perp} is a subspace even if \boldsymbol{S} is not.
$19 L^{\perp}$ is the 2-dimensional subspace (a plane) in \mathbf{R}^{3} perpendicular to \boldsymbol{L}. Then $\left(\boldsymbol{L}^{\perp}\right)^{\perp}$ is a 1-dimensional subspace (a line) perpendicular to \boldsymbol{L}^{\perp}. In fact $\left(\boldsymbol{L}^{\perp}\right)^{\perp}$ is \boldsymbol{L}.

20 If \boldsymbol{V} is the whole space \mathbf{R}^{4}, then \boldsymbol{V}^{\perp} contains only the zero vector. Then $\left(\boldsymbol{V}^{\perp}\right)^{\perp}=$ all vectors perpendicular to the zero vector $=\mathbf{R}^{4}=\boldsymbol{V}$.

21 For example $(-5,0,1,1)$ and $(0,1,-1,0)$ span $\boldsymbol{S}^{\perp}=$ nullspace of $A=\left[\begin{array}{llll}1 & 2 & 2 & 3 \\ 1 & 3 & 3 & 2\end{array}\right]$.
$22(1,1,1,1)$ is a basis for the line \boldsymbol{P}^{\perp} orthogonal to $P . A=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]$ has \boldsymbol{P} as its nullspace and \boldsymbol{P}^{\perp} as its row space.
$23 x$ in V^{\perp} is perpendicular to every vector in \boldsymbol{V}. Since \boldsymbol{V} contains all the vectors in \boldsymbol{S}, \boldsymbol{x} is perpendicular to every vector in \boldsymbol{S}. So every \boldsymbol{x} in \boldsymbol{V}^{\perp} is also in \boldsymbol{S}^{\perp}.
$24 A A^{-1}=I$: Column 1 of A^{-1} is orthogonal to rows $2,3, \ldots, n$ and therefore to the space spanned by those rows.

25 If the columns of A are unit vectors, all mutually perpendicular, then $A^{\mathrm{T}} A=I$. Simple but important! We write Q for such a matrix.
$26 A=\left[\begin{array}{rrr}2 & 2 & -1 \\ -1 & 2 & 2 \\ 2 & -1 & 2\end{array}\right], \begin{aligned} & \text { This example shows a matrix with perpendicular columns. } \\ & A^{\mathrm{T}} A=9 I \text { is diagonal: }\left(A^{\mathrm{T}} A\right)_{i j}=(\operatorname{column} i \text { of } A) \cdot(\text { column } j \text { of } A) . \\ & \text { When the columns are unit vectors, then } A^{\mathrm{T}} A=I .\end{aligned}$
27 The lines $3 x+y=b_{1}$ and $6 x+2 y=b_{2}$ are parallel. They are the same line if $b_{2}=2 b_{1}$. In that case $\left(b_{1}, b_{2}\right)$ is perpendicular to $(\mathbf{- 2}, \mathbf{1})$. The nullspace of the 2 by 2 matrix is the line $3 x+y=\mathbf{0}$. One particular vector in the nullspace is $(\mathbf{- 1 , 3})$.

28 (a) $(1,-1,0)$ is in both planes. Normal vectors are perpendicular, but planes still intersect! Two planes in \mathbf{R}^{3} can't be orthogonal. (b) Need three orthogonal vectors to span the whole orthogonal complement in \mathbf{R}^{5}. (c) Lines in \mathbf{R}^{3} can meet at the zero vector without being orthogonal.
$29 A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 0 \\ 3 & 0 & 1\end{array}\right], B=\left[\begin{array}{rrr}1 & 1 & -1 \\ 2 & -1 & 0 \\ 3 & 0 & -1\end{array}\right] ; \quad \begin{aligned} & A \text { has } \boldsymbol{v}=(1,2,3) \text { in row and column spaces } \\ & B \text { has } \boldsymbol{v} \text { in its column space and nullspace. } \\ & \boldsymbol{v} \text { can not be in the nullspace and row space, }\end{aligned}$ or in the left nullspace and column space. These spaces are orthogonal and $\boldsymbol{v}^{\mathrm{T}} \boldsymbol{v} \neq 0$.

30 When $A B=0$, every column of B is multiplied by A to give zero. So the column space of B is contained in the nullspace of A. Therefore the dimension of $C(B) \leq$ dimension of $N(A)$. This means $\operatorname{rank}(B) \leq 4-\operatorname{rank}(A)$.

31 null $\left(N^{\prime}\right)$ produces a basis for the row space of A (perpendicular to $N(A)$).
32 We need $\boldsymbol{r}^{\mathrm{T}} \boldsymbol{n}=0$ and $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{\ell}=0$. All possible examples have the form $a \boldsymbol{c} \boldsymbol{r}^{\mathrm{T}}$ with $a \neq 0$.

33 Both \boldsymbol{r} 's must be orthogonal to both \boldsymbol{n} 's, both \boldsymbol{c} 's must be orthogonal to both $\boldsymbol{\ell}$'s, each pair (\boldsymbol{r} 's, \boldsymbol{n} 's, \boldsymbol{c} 's, and ℓ 's) must be independent. Fact: All A 's with these subspaces have the form $\left[\boldsymbol{c}_{1} \boldsymbol{c}_{2}\right] M\left[\boldsymbol{r}_{1} \boldsymbol{r}_{2}\right]^{\mathrm{T}}$ for a 2 by 2 invertible M.

You must take $\left[\boldsymbol{c}_{1}, \boldsymbol{c}_{2}\right]$ times $\left[\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right]^{\mathrm{T}}$.

Problem Set 4.2, page 214

1 (a) $\boldsymbol{a}^{\mathrm{T}} \boldsymbol{b} / \boldsymbol{a}^{\mathrm{T}} \boldsymbol{a}=5 / 3 ; \boldsymbol{p}=5 \boldsymbol{a} / 3=(5 / 3,5 / 3,5 / 3) ; \boldsymbol{e}=(-2,1,1) / 3$
(b) $\boldsymbol{a}^{\mathrm{T}} \boldsymbol{b} / \boldsymbol{a}^{\mathrm{T}} \boldsymbol{a}=-1 ; \boldsymbol{p}=-\boldsymbol{a} ; \boldsymbol{e}=\mathbf{0}$.

2 (a) The projection of $\boldsymbol{b}=(\cos \theta, \sin \theta)$ onto $\boldsymbol{a}=(1,0)$ is $\boldsymbol{p}=(\cos \theta, 0)$
(b) The projection of $\boldsymbol{b}=(1,1)$ onto $\boldsymbol{a}=(1,-1)$ is $\boldsymbol{p}=(0,0)$ since $\boldsymbol{a}^{\mathrm{T}} \boldsymbol{b}=0$.

The picture for part (a) has the vector \boldsymbol{b} at an angle θ with the horizontal \boldsymbol{a}. The picture for part (b) has vectors \boldsymbol{a} and \boldsymbol{b} at a 90° angle.
$3 P_{1}=\frac{1}{3}\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$ and $P_{1} \boldsymbol{b}=\frac{1}{3}\left[\begin{array}{l}5 \\ 5 \\ 5\end{array}\right] . P_{2}=\frac{1}{11}\left[\begin{array}{lll}1 & 3 & 1 \\ 3 & 9 & 3 \\ 1 & 3 & 1\end{array}\right]$ and $P_{2} \boldsymbol{b}=\left[\begin{array}{l}1 \\ 3 \\ 1\end{array}\right]$.
$4 P_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], P_{2}=\frac{\boldsymbol{a} \boldsymbol{a}^{\mathrm{T}}}{\boldsymbol{a}^{\mathrm{T}} \boldsymbol{a}}=\frac{1}{2}\left[\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right] . \begin{aligned} & P_{1} \text { projects onto }(1,0), P_{2} \text { projects onto }(1,-1) \\ & P_{1} P_{2} \neq 0 \text { and } P_{1}+P_{2} \text { is not a projection matrix. } \\ & \left(P_{1}+P_{2}\right)^{2} \text { is different from } P_{1}+P_{2} .\end{aligned}$
$5 P_{1}=\frac{1}{9}\left[\begin{array}{rrr}1 & -2 & -2 \\ -2 & 4 & 4 \\ -2 & 4 & 4\end{array}\right] \quad$ and $\quad P_{2}=\frac{1}{9}\left[\begin{array}{rrr}4 & 4 & -2 \\ 4 & 4 & -2 \\ -2 & -2 & 1\end{array}\right]$.
P_{1} and P_{2} are the projection matrices onto the lines through $\boldsymbol{a}_{1}=(-1,2,2)$ and $\boldsymbol{a}_{2}=(2,2,-1) . P_{1} P_{2}=$ zero matrix because $\boldsymbol{a}_{1} \perp \boldsymbol{a}_{2}$.
$6 \boldsymbol{p}_{1}=\left(\frac{1}{9},-\frac{2}{9},-\frac{2}{9}\right)$ and $\boldsymbol{p}_{2}=\left(\frac{4}{9}, \frac{4}{9},-\frac{2}{9}\right)$ and $\boldsymbol{p}_{3}=\left(\frac{4}{9},-\frac{2}{9}, \frac{4}{9}\right)$. So $\boldsymbol{p}_{1}+\boldsymbol{p}_{2}+\boldsymbol{p}_{3}=\boldsymbol{b}$.
$7 P_{1}+P_{2}+P_{3}=\frac{1}{9}\left[\begin{array}{rrr}1 & -2 & -2 \\ -2 & 4 & 4 \\ -2 & 4 & 4\end{array}\right]+\frac{1}{9}\left[\begin{array}{rrr}4 & 4 & -2 \\ 4 & 4 & -2 \\ -2 & -2 & 1\end{array}\right]+\frac{1}{9}\left[\begin{array}{rrr}4 & -2 & 4 \\ -2 & 1 & -2 \\ 4 & -2 & 4\end{array}\right]=I$. We can add projections onto orthogonal vectors to get the projection matrix onto the larger space. This is important.

8 The projections of $(1,1)$ onto $(1,0)$ and $(1,2)$ are $\boldsymbol{p}_{1}=(1,0)$ and $\boldsymbol{p}_{2}=\frac{3}{5}(1,2)$. Then $\boldsymbol{p}_{1}+\boldsymbol{p}_{2} \neq \boldsymbol{b}$. The sum of projections is not a projection onto the space spanned by $(1,0)$ and $(1,2)$ because those vectors are not orthogonal.

9 Since A is invertible, $P=A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}$ separates into $A A^{-1}\left(A^{\mathrm{T}}\right)^{-1} A^{\mathrm{T}}=I$. And I is the projection matrix onto all of \mathbf{R}^{2}.
$10 P_{2}=\frac{\boldsymbol{a}_{2} \boldsymbol{a}_{2}^{\mathrm{T}}}{\boldsymbol{a}_{2}^{\mathrm{T}} \boldsymbol{a}_{2}}=\left[\begin{array}{ll}0.2 & 0.4 \\ 0.4 & 0.8\end{array}\right], P_{2} \boldsymbol{a}_{1}=\left[\begin{array}{l}0.2 \\ 0.4\end{array}\right], P_{1}=\frac{\boldsymbol{a}_{1} \boldsymbol{a}_{1}^{\mathrm{T}}}{\boldsymbol{a}_{1}^{\mathrm{T}} \boldsymbol{a}_{1}}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], P_{1} P_{2} \boldsymbol{a}_{1}=$ $\left[\begin{array}{c}0.2 \\ 0\end{array}\right] . \begin{gathered}\text { This is not } \boldsymbol{a}_{1}=(1,0) \\ N o, \boldsymbol{P}_{\mathbf{1}} \boldsymbol{P}_{\mathbf{2}} \neq\left(P_{1} P_{2}\right)^{2} .\end{gathered}$

11 (a) $\boldsymbol{p}=A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}} \boldsymbol{b}=(2,3,0), \boldsymbol{e}=(0,0,4), A^{\mathrm{T}} \boldsymbol{e}=\mathbf{0}$
(b) $\boldsymbol{p}=(4,4,6)$ and $\boldsymbol{e}=\mathbf{0}$ because \boldsymbol{b} is in the column space of A.
$12 P_{1}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]=$ projection matrix onto the column space of A (the $x y$ plane)
$P_{2}=\left[\begin{array}{lll}0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0 & 0 & 1\end{array}\right]=\begin{aligned} & \text { Projection matrix } A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}} \text { onto the second column space. } \\ & \text { Certainly }\left(P_{2}\right)^{2}=P_{2} . \text { A true projection matrix. }\end{aligned}$
$13 A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right], P=$ square matrix $=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right], \boldsymbol{p}=P\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 0\end{array}\right]$.
14 The projection of this \boldsymbol{b} onto the column space of A is \boldsymbol{b} itself because \boldsymbol{b} is in that column space. But P is not necessarily I. Here $\boldsymbol{b}=2($ column 1 of $A)$:

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 2 \\
2 & 0
\end{array}\right] \text { gives } P=\frac{1}{21}\left[\begin{array}{rrr}
5 & 8 & -4 \\
8 & 17 & 2 \\
-4 & 2 & 20
\end{array}\right] \text { and } \boldsymbol{b}=P \boldsymbol{b}=\boldsymbol{p}=\left[\begin{array}{l}
0 \\
2 \\
4
\end{array}\right] .
$$

$152 A$ has the same column space as A. Then P is the same for A and $2 A$, but $\widehat{\boldsymbol{x}}$ for $2 A$ is half of $\widehat{\boldsymbol{x}}$ for A.
$16 \frac{1}{2}(1,2,-1)+\frac{3}{2}(1,0,1)=(2,1,1)$. So \boldsymbol{b} is in the plane. Projection shows $P \boldsymbol{b}=\boldsymbol{b}$.
17 If $P^{2}=P$ then $(\boldsymbol{I}-\boldsymbol{P})^{\mathbf{2}}=(I-P)(I-P)=I-P I-I P+P^{2}=\boldsymbol{I}-\boldsymbol{P}$. When P projects onto the column space, $I-P$ projects onto the left nullspace.

18 (a) $I-P$ is the projection matrix onto $(1,-1)$ in the perpendicular direction to $(1,1)$
(b) $I-P$ projects onto the plane $x+y+z=0$ perpendicular to $(1,1,1)$.

19

$\mathbf{2 0} \boldsymbol{e}=\left[\begin{array}{r}1 \\ -1 \\ -2\end{array}\right], Q=\frac{\boldsymbol{e} \boldsymbol{e}^{\mathrm{T}}}{\boldsymbol{e}^{\mathrm{T}} \boldsymbol{e}}=\left[\begin{array}{rrr}1 / 6 & -1 / 6 & -1 / 3 \\ -1 / 6 & 1 / 6 & 1 / 3 \\ -1 / 3 & 1 / 3 & 2 / 3\end{array}\right], I-Q=\left[\begin{array}{rrr}5 / 6 & 1 / 6 & 1 / 3 \\ 1 / 6 & 5 / 6 & -1 / 3 \\ 1 / 3 & -1 / 3 & 1 / 3\end{array}\right]$.
$21\left(A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}\right)^{2}=A\left(A^{\mathrm{T}} A\right)^{-1}\left(A^{\mathrm{T}} A\right)\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}=A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}$. So $P^{2}=P$. $P \boldsymbol{b}$ is in the column space (where P projects). Then its projection $P(P \boldsymbol{b})$ is also $P \boldsymbol{b}$.
$22 P^{\mathrm{T}}=\left(A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}\right)^{\mathrm{T}}=A\left(\left(A^{\mathrm{T}} A\right)^{-1}\right)^{\mathrm{T}} A^{\mathrm{T}}=A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}=P$. $\left(A^{\mathrm{T}} A\right.$ is symmetric!)

23 If A is invertible then its column space is all of \mathbf{R}^{n}. So $P=I$ and $\boldsymbol{e}=\mathbf{0}$.
24 The nullspace of A^{T} is orthogonal to the column space $\boldsymbol{C}(A)$. So if $A^{\mathrm{T}} \boldsymbol{b}=\mathbf{0}$, the projection of \boldsymbol{b} onto $\boldsymbol{C}(A)$ should be $\boldsymbol{p}=\mathbf{0}$. Check $P \boldsymbol{b}=A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}} \boldsymbol{b}=A\left(A^{\mathrm{T}} A\right)^{-1} \mathbf{0}$.

25 The column space of \boldsymbol{P} is the space that \boldsymbol{P} projects onto. The column space of A always contains all outputs $A \boldsymbol{x}$ and here the outputs $P \boldsymbol{x}$ fill the subspace S. Then rank of $P=$ dimension of $S=n$.
$26 A^{-1}$ exists since the rank is $r=m$. Multiply $A^{2}=A$ by A^{-1} to get $A=I$.
27 If $A^{\mathrm{T}} A \boldsymbol{x}=\mathbf{0}$ then $A \boldsymbol{x}$ is in the nullspace of $\boldsymbol{A}^{\mathbf{T}}$. But $A \boldsymbol{x}$ is always in the column space of \boldsymbol{A}. To be in both of those perpendicular spaces, $A \boldsymbol{x}$ must be zero. So A and $A^{\mathrm{T}} A$ have the same nullspace : $A^{\mathrm{T}} A \boldsymbol{x}=\mathbf{0}$ exactly when $A \boldsymbol{x}=\mathbf{0}$.
$28 P^{2}=P=P^{\mathrm{T}}$ give $P^{\mathrm{T}} P=P$. Then the $(2,2)$ entry of P equals the $(2,2)$ entry of $P^{\mathrm{T}} P$. But the $(2,2)$ entry of $P^{\mathrm{T}} P$ is the length squared of column 2.
$29 A=B^{\mathrm{T}}$ has independent columns, so $A^{\mathrm{T}} A$ (which is $B B^{\mathrm{T}}$) must be invertible.
30 (a) The column space is the line through $\boldsymbol{a}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$ so $P_{C}=\frac{\boldsymbol{a} \boldsymbol{a}^{\mathrm{T}}}{\boldsymbol{a}^{\mathrm{T}} \boldsymbol{a}}=\frac{1}{25}\left[\begin{array}{cc}9 & 12 \\ 12 & 16\end{array}\right]$.

The formula $P=A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}$ needs independent columns-this A has dependent columns. The update formula is correct.
(b) The row space is the line through $\boldsymbol{v}=(1,2,2)$ and $P_{R}=\boldsymbol{v} \boldsymbol{v}^{\mathrm{T}} / \boldsymbol{v}^{\mathrm{T}} \boldsymbol{v}$. Always $P_{C} A=A$ (columns of A project to themselves) and $A P_{R}=A$. Then $\boldsymbol{P}_{\boldsymbol{C}} \boldsymbol{A} \boldsymbol{P}_{\boldsymbol{R}}=\boldsymbol{A}$.

31 Test: The error $\boldsymbol{e}=\boldsymbol{b}-\boldsymbol{p}$ must be perpendicular to all the \boldsymbol{a} 's.
32 Since $P_{1} \boldsymbol{b}$ is in $\boldsymbol{C}(A)$ and P_{2} projects onto that column space, $P_{2}\left(P_{1} \boldsymbol{b}\right)$ equals $P_{1} \boldsymbol{b}$. So $P_{2} P_{1}=P_{1}=\boldsymbol{a} \boldsymbol{a}^{\mathrm{T}} / \boldsymbol{a}^{\mathrm{T}} \boldsymbol{a}$ where $\boldsymbol{a}=(1,2,0)$.

33 Each \boldsymbol{b}_{1} to \boldsymbol{b}_{99} is multiplied by $\frac{1}{999}-\frac{1}{1000}\left(\frac{1}{999}\right)=\frac{999}{1000} \frac{1}{999}=\frac{1}{1000}$. The last pages of the book discuss least squares and the Kalman filter.

Problem Set 4.3, page 229

$\boldsymbol{1} A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 1 & 3 \\ 1 & 4\end{array}\right]$ and $\boldsymbol{b}=\left[\begin{array}{c}0 \\ 8 \\ 8 \\ 20\end{array}\right]$ give $A^{\mathrm{T}} A=\left[\begin{array}{cc}4 & 8 \\ 8 & 26\end{array}\right]$ and $A^{\mathrm{T}} \boldsymbol{b}=\left[\begin{array}{c}36 \\ 112\end{array}\right]$.

$$
A^{\mathrm{T}} A \widehat{\boldsymbol{x}}=A^{\mathrm{T}} \boldsymbol{b} \text { gives } \widehat{\boldsymbol{x}}=\left[\begin{array}{l}
1 \\
4
\end{array}\right] \text { and } \boldsymbol{p}=A \widehat{\boldsymbol{x}}=\left[\begin{array}{c}
1 \\
5 \\
13 \\
17
\end{array}\right] \text { and } \boldsymbol{e}=\boldsymbol{b}-\boldsymbol{p}=\left[\begin{array}{r}
-1 \\
3 \\
-5 \\
\\
3
\end{array}\right]
$$

$$
\mathbf{2}\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 3 \\
1 & 4
\end{array}\right]\left[\begin{array}{l}
C \\
D
\end{array}\right]=\left[\begin{array}{r}
0 \\
8 \\
8 \\
20
\end{array}\right] . \begin{aligned}
& \text { This } A \boldsymbol{x}=\boldsymbol{b} \text { is unsolvable }\left[\begin{array}{r}
1 \\
5 \\
\text { Project } \boldsymbol{b} \text { to } \boldsymbol{p}=P \boldsymbol{b}= \\
13 \\
17
\end{array}\right] ; \text { When } \boldsymbol{p} \text { replaces } \boldsymbol{b}, ~, ~, ~
\end{aligned}
$$

$\widehat{\boldsymbol{x}}=\left[\begin{array}{l}1 \\ 4\end{array}\right]$ exactly solves $A \widehat{\boldsymbol{x}}=\boldsymbol{p}$.
3 In Problem 2, $\boldsymbol{p}=A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}} \boldsymbol{b}=(1,5,13,17)$ and $\boldsymbol{e}=\boldsymbol{b}-\boldsymbol{p}=(-1,3,-5,3)$.
This \boldsymbol{e} is perpendicular to both columns of A. This shortest distance $\|\boldsymbol{e}\|$ is $\sqrt{44}$.
$4 E=(C+\mathbf{0} D)^{2}+(C+\mathbf{1} D-8)^{2}+(C+\mathbf{3} D-8)^{2}+(C+\mathbf{4} D-20)^{2}$. Then
$\partial E / \partial C=2 C+2(C+D-8)+2(C+3 D-8)+2(C+4 D-20)=0$ and
$\partial E / \partial D=1 \cdot 2(C+D-8)+3 \cdot 2(C+3 D-8)+4 \cdot 2(C+4 D-20)=0$.
These two normal equations are again $\left[\begin{array}{rr}4 & 8 \\ 8 & 26\end{array}\right]\left[\begin{array}{l}C \\ D\end{array}\right]=\left[\begin{array}{r}36 \\ 112\end{array}\right]$.
$5 E=(C-0)^{2}+(C-8)^{2}+(C-8)^{2}+(C-20)^{2} . A^{\mathrm{T}}=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]$ and $A^{\mathrm{T}} A=[4]$. $A^{\mathrm{T}} \boldsymbol{b}=[36]$ and $\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}} \boldsymbol{b}=\mathbf{9}=$ best height C for the horizontal line. Errors $\boldsymbol{e}=\boldsymbol{b}-\boldsymbol{p}=(-9,-1,-1,11)$ still add to zero.
$6 \boldsymbol{a}=(1,1,1,1)$ and $\boldsymbol{b}=(0,8,8,20)$ give $\widehat{x}=\boldsymbol{a}^{\mathrm{T}} \boldsymbol{b} / \boldsymbol{a}^{\mathrm{T}} \boldsymbol{a}=9$ and the projection is $\widehat{x} \boldsymbol{a}=\boldsymbol{p}=(9,9,9,9)$. Then $\boldsymbol{e}^{\mathrm{T}} \boldsymbol{a}=(-9,-1,-1,11)^{\mathrm{T}}(1,1,1,1)=0$ and the shortest distance from \boldsymbol{b} to the line through \boldsymbol{a} is $\|\boldsymbol{e}\|=\sqrt{204}$.

7 Now the 4 by 1 matrix in $A \boldsymbol{x}=\boldsymbol{b}$ is $A=\left[\begin{array}{llll}0 & 1 & 3 & 4\end{array}\right]^{\mathrm{T}}$. Then $A^{\mathrm{T}} A=[26]$ and $A^{\mathrm{T}} \boldsymbol{b}=[112]$. Best $D=112 / 26=56 / 13$.
$8 \widehat{\boldsymbol{x}}=\boldsymbol{a}^{\mathrm{T}} \boldsymbol{b} / \boldsymbol{a}^{\mathrm{T}} \boldsymbol{a}=56 / 13$ and $\boldsymbol{p}=(56 / 13)(0,1,3,4) .(C, D)=(9,56 / 13)$ don't match $(C, D)=(1,4)$ from Problems 1-4. Columns of A were not perpendicular so we can't project separately to find C and D.
$\begin{array}{r}\text { Parabola } \\ \\ \text { Project } \boldsymbol{b} \\ \text { 4D to 3D }\end{array}\left[\begin{array}{rrr}1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 3 & 9 \\ 1 & 4 & 16\end{array}\right]\left[\begin{array}{l}C \\ D \\ E\end{array}\right]=\left[\begin{array}{r}0 \\ 8 \\ 8 \\ 20\end{array}\right] . A^{\mathrm{T}} A \widehat{\boldsymbol{x}}=\left[\begin{array}{rrr}4 & 8 & 26 \\ 8 & 26 & 92 \\ 26 & 92 & 338\end{array}\right]\left[\begin{array}{l}C \\ D \\ E\end{array}\right]=\left[\begin{array}{r}36 \\ 112 \\ 400\end{array}\right]$.
Figure 4.9 (a) is fitting 4 points and 4.9 (b) is a projection in \mathbf{R}^{4} : same problem!
$\mathbf{1 0}\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64\end{array}\right]\left[\begin{array}{l}C \\ D \\ E \\ F\end{array}\right]=\left[\begin{array}{r}0 \\ 8 \\ 8 \\ 20\end{array}\right]$. Then $\left[\begin{array}{l}C \\ D \\ E \\ F\end{array}\right]=\frac{1}{3}\left[\begin{array}{r}0 \\ 47 \\ -28 \\ 5\end{array}\right] . \begin{aligned} & \text { Exact cubic so } \boldsymbol{p}=\boldsymbol{b}, \boldsymbol{e}=\mathbf{0} . \\ & \begin{array}{l}\text { This Vandermonde matrix } \\ \text { gives exact interpolation } \\ \text { by a cubic at } 0,1,3,4\end{array}\end{aligned}$
11 (a) The best line $x=1+4 t$ gives the center point $\widehat{\boldsymbol{b}}=9$ at center time, $\widehat{t}=2$.
(b) The first equation $C m+D \sum t_{i}=\sum b_{i}$ divided by m gives $C+D \widehat{t}=\widehat{\boldsymbol{b}}$. This shows: The best line goes through $\widehat{\boldsymbol{b}}$ at time \widehat{t}.

12 (a) $\boldsymbol{a}=(1, \ldots, 1)$ has $\boldsymbol{a}^{\mathrm{T}} \boldsymbol{a}=m, \boldsymbol{a}^{\mathrm{T}} \boldsymbol{b}=b_{1}+\cdots+b_{m}$. Therefore $\widehat{x}=\boldsymbol{a}^{\mathrm{T}} \boldsymbol{b} / m$ is the mean of the b 's (their average value)
(b) $\boldsymbol{e}=\boldsymbol{b}-\widehat{x} \boldsymbol{a}$ and $\|\boldsymbol{e}\|^{2}=\left(b_{1}-\text { mean }\right)^{2}+\cdots+\left(b_{m}-\text { mean }\right)^{2}=$ variance (denoted by $\boldsymbol{\sigma}^{\mathbf{2}}$).
(c) $\boldsymbol{p}=(3,3,3)$ and $\boldsymbol{e}=(-2,-1,3) \boldsymbol{p}^{\mathrm{T}} \boldsymbol{e}=0$. Projection matrix $P=\frac{1}{3}\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$.
$13\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}(\boldsymbol{b}-A \boldsymbol{x})=\widehat{\boldsymbol{x}}-\boldsymbol{x}$. This tells us: When the components of $A \boldsymbol{x}-\boldsymbol{b}$ add to zero, so do the components of $\widehat{\boldsymbol{x}}-\boldsymbol{x}$: Unbiased.

14 The matrix $(\widehat{\boldsymbol{x}}-\boldsymbol{x})(\widehat{\boldsymbol{x}}-\boldsymbol{x})^{\mathrm{T}}$ is $\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}(\boldsymbol{b}-A \boldsymbol{x})(\boldsymbol{b}-A \boldsymbol{x})^{\mathrm{T}} A\left(A^{\mathrm{T}} A\right)^{-1}$. When the average of $(\boldsymbol{b}-A \boldsymbol{x})(\boldsymbol{b}-A \boldsymbol{x})^{\mathrm{T}}$ is $\sigma^{2} I$, the average of $(\widehat{\boldsymbol{x}}-\boldsymbol{x})(\widehat{\boldsymbol{x}}-\boldsymbol{x})^{\mathrm{T}}$ will be the output covariance matrix $\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}} \sigma^{2} A\left(A^{\mathrm{T}} A\right)^{-1}$ which simplifies to $\sigma^{2}\left(A^{\mathrm{T}} A\right)^{-1}$. That gives the average of the squared output errors $\widehat{\boldsymbol{x}}-\boldsymbol{x}$.

15 When A has 1 column of 4 ones, Problem 14 gives the expected error $(\widehat{x}-x)^{2}$ as $\sigma^{2}\left(A^{\mathrm{T}} A\right)^{-1}=\sigma^{2} / 4$. By taking m measurements, the variance drops from σ^{2} to σ^{2} / m. This leads to the Monte Carlo method in Section 12.1.
$16 \frac{1}{10} b_{10}+\frac{\mathbf{9}}{\mathbf{1 0}} \widehat{x}_{9}=\frac{1}{10}\left(b_{1}+\cdots+b_{10}\right)$. Knowing \widehat{x}_{9} avoids adding all ten b 's.
$\mathbf{1 7}\left[\begin{array}{rr}1 & -1 \\ 1 & 1 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}C \\ D\end{array}\right]=\left[\begin{array}{r}7 \\ 7 \\ 21\end{array}\right]$. The solution $\widehat{\boldsymbol{x}}=\left[\begin{array}{l}\mathbf{9} \\ \mathbf{4}\end{array}\right]$ comes from $\left[\begin{array}{ll}3 & 2 \\ 2 & 6\end{array}\right]\left[\begin{array}{l}C \\ D\end{array}\right]=$ $\left[\begin{array}{l}35 \\ 42\end{array}\right]$.
$18 \boldsymbol{p}=A \widehat{\boldsymbol{x}}=(5,13,17)$ gives the heights of the closest line. The vertical errors are $\boldsymbol{b}-\boldsymbol{p}=(2,-6,4)$. This error \boldsymbol{e} has $P \boldsymbol{e}=P \boldsymbol{b}-P \boldsymbol{p}=\boldsymbol{p}-\boldsymbol{p}=\mathbf{0}$.

19 If $\boldsymbol{b}=$ error \boldsymbol{e} then \boldsymbol{b} is perpendicular to the column space of A. Projection $\boldsymbol{p}=\mathbf{0}$.
20 The matrix A has columns $1,1,1$ and $-1,1,2$. If $\boldsymbol{b}=A \widehat{\boldsymbol{x}}=(5,13,17)$ then $\widehat{\boldsymbol{x}}=(9,4)$ and $\boldsymbol{e}=\mathbf{0}$ since $\boldsymbol{b}=9($ column 1$)+4($ column 2$)$ is in the column space of A.
$21 \boldsymbol{e}$ is in $\boldsymbol{N}\left(A^{\mathrm{T}}\right) ; \boldsymbol{p}$ is in $\boldsymbol{C}(A)$; $\widehat{\boldsymbol{x}}$ is in $\boldsymbol{C}\left(A^{\mathrm{T}}\right) ; \boldsymbol{N}(A)=\{\mathbf{0}\}=$ zero vector only.
22 The least squares equation is $\left[\begin{array}{rr}5 & \mathbf{0} \\ \mathbf{0} & 10\end{array}\right]\left[\begin{array}{l}C \\ D\end{array}\right]=\left[\begin{array}{r}5 \\ -10\end{array}\right]$. Solution: $C=1, D=-1$. The best line is $b=1-t$. Symmetric t 's \Rightarrow diagonal $A^{\mathrm{T}} A \Rightarrow$ easy solution.
$23 \boldsymbol{e}$ is orthogonal to \boldsymbol{p} in \mathbf{R}^{m}; then $\|\boldsymbol{e}\|^{2}=e^{\mathrm{T}}(\boldsymbol{b}-\boldsymbol{p})=\boldsymbol{e}^{\mathrm{T}} \boldsymbol{b}=\boldsymbol{b}^{\mathrm{T}} \boldsymbol{b}-\boldsymbol{b}^{\mathrm{T}} \boldsymbol{p}$.

24 The derivatives of $\|A \boldsymbol{x}-\boldsymbol{b}\|^{2}=\boldsymbol{x}^{\mathrm{T}} A^{\mathrm{T}} A \boldsymbol{x}-2 \boldsymbol{b}^{\mathrm{T}} A \boldsymbol{x}+\boldsymbol{b}^{\mathrm{T}} \boldsymbol{b}$ (this last term is constant) are zero when $2 A^{\mathrm{T}} A \boldsymbol{x}=2 A^{\mathrm{T}} \boldsymbol{b}$, or $\boldsymbol{x}=\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}} \boldsymbol{b}$.

253 points on a linewill give equal slopes $\left(b_{2}-b_{1}\right) /\left(t_{2}-t_{1}\right)=\left(b_{3}-b_{2}\right) /\left(t_{3}-t_{2}\right)$. Linear algebra: Orthogonal to the columns $(1,1,1)$ and $\left(t_{1}, t_{2}, t_{3}\right)$ is $\boldsymbol{y}=\left(t_{2}-t_{3}, t_{3}-\right.$ $\left.t_{1}, t_{1}-t_{2}\right)$ in the left nullspace of $A . \boldsymbol{b}$ is in the column space! Then $\boldsymbol{y}^{\mathrm{T}} \boldsymbol{b}=0$ is the same equal slopes condition written as $\left(b_{2}-b_{1}\right)\left(t_{3}-t_{2}\right)=\left(b_{3}-b_{2}\right)\left(t_{2}-t_{1}\right)$.

26

The unsolvable
equations for $C+D x+E y=(0,1,3,4)$
at the 4 corners are

1 \& 0 \& 1

1 \& -1 \& 0

1 \& 0 \& -1\end{array}\right]\left[$$
\begin{array}{l}C \\
D \\
E\end{array}
$$\right]=\left[$$
\begin{array}{l}0 \\
1 \\
3 \\
4\end{array}
$$\right]\). Then $A^{\mathrm{T}} A=\left[\begin{array}{lll}4 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2\end{array}\right]$
and $A^{\mathrm{T}} \boldsymbol{b}=\left[\begin{array}{r}8 \\ -2 \\ -3\end{array}\right]$ and $\left[\begin{array}{l}C \\ D \\ E\end{array}\right]=\left[\begin{array}{r}2 \\ -1 \\ -3 / 2\end{array}\right]$. At $x, y=0,0$ the best plane $2-x-\frac{3}{2} y$ has height $C=\mathbf{2}=$ average of $0,1,3,4$.

27 The shortest link connecting two lines in space is perpendicular to those lines.
28 If A has dependent columns, then $A^{\mathrm{T}} A$ is not invertable and the usual formula $P=$ $A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}$ will fail. Replace A in that formula by the matrix B that keeps only the pivot columns of A.

29 Only 1 plane contains $\mathbf{0}, \boldsymbol{a}_{1}, \boldsymbol{a}_{2}$ unless $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}$ are dependent. Same test for $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n-1}$. If they are dependent, there is a vector \boldsymbol{v} perpendicular to all the \boldsymbol{a} 's. Then they all lie on the plane $\boldsymbol{v}^{\mathrm{T}} \boldsymbol{x}=0$ going through $\boldsymbol{x}=(0,0, \ldots, 0)$.

30 When A has orthogonal columns $(1, \ldots, 1)$ and $\left(T_{1}, \ldots, T_{m}\right)$, the matrix $A^{\mathrm{T}} A$ is diagonal with entries m and $T_{1}^{2}+\cdots+T_{m}^{2}$. Also $A^{\mathrm{T}} b$ has entries $b_{1}+\cdots+b_{m}$ and $T_{1} b_{1}+\cdots+T_{m} b_{m}$. The solution with that diagonal $A^{\mathrm{T}} A$ is just the given $\widehat{\boldsymbol{x}}=(C, D)$.

Problem Set 4.4, page 242

1 (a) Independent (b) Independent and orthogonal (c) Independent and orthonormal.
For orthonormal vectors, (a) becomes $(1,0),(0,1)$ and (b) is $(.6, .8),(.8,-.6)$.
$\begin{aligned} & \text { Divide by length } 3 \text { to get } \\ & \boldsymbol{q}_{1}=\left(\frac{2}{3}, \frac{2}{3},-\frac{1}{3}\right) \cdot \boldsymbol{q}_{2}=\left(-\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right) .\end{aligned} Q^{\mathrm{T}} Q=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ but $Q Q^{\mathrm{T}}=\left[\begin{array}{rrr}5 / 9 & 2 / 9 & -4 / 9 \\ 2 / 9 & 8 / 9 & 2 / 9 \\ -4 / 9 & 2 / 9 & 5 / 9\end{array}\right]$.
3 (a) $A^{\mathrm{T}} A$ will be $16 I$
(b) $A^{\mathrm{T}} A$ will be diagonal with entries $1^{2}, 2^{2}, 3^{2}=1,4,9$.

4 (a) $Q=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right], Q Q^{\mathrm{T}}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right] \neq I$. Any Q with $n<m$ has $Q Q^{\mathrm{T}} \neq I$.
(b) $(1,0)$ and $(0,0)$ are orthogonal, not independent. Nonzero orthogonal vectors are independent. (c) From $\boldsymbol{q}_{1}=(1,1,1) / \sqrt{3}$ my favorite is $\boldsymbol{q}_{2}=(1,-1,0) / \sqrt{2}$ and $\boldsymbol{q}_{3}=(1,1,-2) / \sqrt{6}$.

5 Orthogonal vectors are $(1,-1,0)$ and $(1,1,-1)$. Orthonormal after dividing by their lengths: $\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right)$ and $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)$.
$6 Q_{1} Q_{2}$ is orthogonal because $\left(Q_{1} Q_{2}\right)^{\mathrm{T}} Q_{1} Q_{2}=Q_{2}^{\mathrm{T}} Q_{1}^{\mathrm{T}} Q_{1} Q_{2}=Q_{2}^{\mathrm{T}} Q_{2}=I$.
7 When Gram-Schmidt gives Q with orthonormal columns, $Q^{\mathrm{T}} Q \widehat{\boldsymbol{x}}=Q^{\mathrm{T}} \boldsymbol{b}$ becomes $\widehat{\boldsymbol{x}}=Q^{\mathrm{T}} \boldsymbol{b}$. No cost to solve the normal equations !

8 If \boldsymbol{q}_{1} and \boldsymbol{q}_{2} are orthonormal vectors in \mathbf{R}^{5} then $\boldsymbol{p}=\left(\boldsymbol{q}_{1}^{\mathrm{T}} \boldsymbol{b}\right) \boldsymbol{q}_{1}+\left(\boldsymbol{q}_{2}^{\mathrm{T}} \boldsymbol{b}\right) \boldsymbol{q}_{2}$ is closest to \boldsymbol{b}.
The error $\boldsymbol{e}=\boldsymbol{b}-\boldsymbol{p}$ is orthogonal to \boldsymbol{q}_{1} and \boldsymbol{q}_{2}
9 (a) $Q=\left[\begin{array}{rr}.8 & -.6 \\ .6 & .8 \\ 0 & 0\end{array}\right]$ has $P=Q Q^{\mathrm{T}}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]=$ projection on the $x y$ plane.
(b) $\left(Q Q^{\mathrm{T}}\right)\left(Q Q^{\mathrm{T}}\right)=Q\left(Q^{\mathrm{T}} Q\right) Q^{\mathrm{T}}=Q Q^{\mathrm{T}}$.

10 (a) If $\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \boldsymbol{q}_{3}$ are orthonormal then the dot product of \boldsymbol{q}_{1} with $c_{1} \boldsymbol{q}_{1}+c_{2} \boldsymbol{q}_{2}+c_{3} \boldsymbol{q}_{3}=$ 0 gives $c_{1}=0$. Similarly $c_{2}=c_{3}=0$. This proves: Independent q 's
(b) $Q \boldsymbol{x}=\mathbf{0}$ leads to $Q^{\mathrm{T}} Q \boldsymbol{x}=\mathbf{0}$ which says $\boldsymbol{x}=\mathbf{0}$.

11 (a) Two orthonormal vectors are $\boldsymbol{q}_{1}=\frac{1}{10}(1,3,4,5,7)$ and $\boldsymbol{q}_{2}=\frac{1}{10}(-7,3,4,-5,1)$
(b) Closest projection in the plane $=$ projection $Q Q^{\mathrm{T}}(1,0,0,0,0)=(0.5,-0.18,-0.24,0.4,0)$.

12 (a) Orthonormal \boldsymbol{a} 's: $\boldsymbol{a}_{1}^{\mathrm{T}} \boldsymbol{b}=\boldsymbol{a}_{1}^{\mathrm{T}}\left(x_{1} \boldsymbol{a}_{1}+x_{2} \boldsymbol{a}_{2}+x_{3} \boldsymbol{a}_{3}\right)=x_{1}\left(\boldsymbol{a}_{1}^{\mathrm{T}} \boldsymbol{a}_{1}\right)=x_{1}$
(b) Orthogonal \boldsymbol{a} 's: $\boldsymbol{a}_{1}^{\mathrm{T}} \boldsymbol{b}=\boldsymbol{a}_{1}^{\mathrm{T}}\left(x_{1} \boldsymbol{a}_{1}+x_{2} \boldsymbol{a}_{2}+x_{3} \boldsymbol{a}_{3}\right)=x_{1}\left(\boldsymbol{a}_{1}^{\mathrm{T}} \boldsymbol{a}_{1}\right)$. Therefore $x_{1}=\boldsymbol{a}_{1}^{\mathrm{T}} \boldsymbol{b} / \boldsymbol{a}_{1}^{\mathrm{T}} \boldsymbol{a}_{1}$
(c) x_{1} is the first component of A^{-1} times \boldsymbol{b} (A is 3 by 3 and invertible).

13 The multiple to subtract is $\frac{\boldsymbol{a}^{\mathrm{T}} \boldsymbol{b}}{\boldsymbol{a}^{\mathrm{T}} \boldsymbol{a}}$. Then $\boldsymbol{B}=\boldsymbol{b}-\frac{\boldsymbol{a}^{\mathrm{T}} \boldsymbol{b}}{\boldsymbol{a}^{\mathrm{T}} \boldsymbol{a}} \boldsymbol{a}=\left[\begin{array}{l}4 \\ 0\end{array}\right]-2\left[\begin{array}{l}1 \\ 1\end{array}\right]=$ $\left[\begin{array}{r}2 \\ -2\end{array}\right]$.
$14\left[\begin{array}{ll}1 & 4 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}\boldsymbol{q}_{1} & \boldsymbol{q}_{2}\end{array}\right]\left[\begin{array}{cc}\|\boldsymbol{a}\| & \boldsymbol{q}_{1}^{\mathrm{T}} \boldsymbol{b} \\ 0 & \|\boldsymbol{B}\|\end{array}\right]=\left[\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\ 1 / \sqrt{2} & -1 / \sqrt{2}\end{array}\right]\left[\begin{array}{rr}\sqrt{2} & 2 \sqrt{2} \\ 0 & 2 \sqrt{2}\end{array}\right]=Q R$.
15 (a) Gram-Schmidt chooses $\boldsymbol{q}_{1}=\boldsymbol{a} /\|\boldsymbol{a}\|=\frac{1}{3}(1,2,-2)$ and $\boldsymbol{q}_{2}=\frac{1}{3}(2,1,2)$. Then $\boldsymbol{q}_{3}=\frac{1}{3}(2,-2,-1)$.
(b) The nullspace of A^{T} contains \boldsymbol{q}_{3}
(c) $\widehat{\boldsymbol{x}}=\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}(1,2,7)=(1,2)$.
$16 \boldsymbol{p}=\left(\boldsymbol{a}^{\mathrm{T}} \boldsymbol{b} / \boldsymbol{a}^{\mathrm{T}} \boldsymbol{a}\right) \boldsymbol{a}=14 \boldsymbol{a} / 49=2 \boldsymbol{a} / 7$ is the projection of \boldsymbol{b} onto $\boldsymbol{a} . \boldsymbol{q}_{1}=\boldsymbol{a} /\|\boldsymbol{a}\|=$ $\boldsymbol{a} / 7$ is $(4,5,2,2) / 7 . \boldsymbol{B}=\boldsymbol{b}-\boldsymbol{p}=(-1,4,-4,-4) / 7$ has $\|\boldsymbol{B}\|=1$ so $\boldsymbol{q}_{2}=\boldsymbol{B}$.
$17 \boldsymbol{p}=\left(\boldsymbol{a}^{\mathrm{T}} \boldsymbol{b} / \boldsymbol{a}^{\mathrm{T}} \boldsymbol{a}\right) \boldsymbol{a}=(3,3,3)$ and $\boldsymbol{e}=(-2,0,2)$. Then Gram-Schmidt will choose $\boldsymbol{q}_{1}=(1,1,1) / \sqrt{3}$ and $\boldsymbol{q}_{2}=(-1,0,1) / \sqrt{2}$.
$18 \boldsymbol{A}=\boldsymbol{a}=(1,-1,0,0) ; \boldsymbol{B}=\boldsymbol{b}-\boldsymbol{p}=\left(\frac{1}{2}, \frac{1}{2},-1,0\right) ; \boldsymbol{C}=\boldsymbol{c}-\boldsymbol{p}_{A}-\boldsymbol{p}_{B}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3},-1\right)$.
Notice the pattern in those orthogonal $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$. In $\mathbf{R}^{5}, \boldsymbol{D}$ would be $\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4},-1\right)$.
Gram-Schmidt would go on to normalize $\boldsymbol{q}_{1}=\boldsymbol{A} /\|\boldsymbol{A}\|, \boldsymbol{q}_{2}=\boldsymbol{B} /\|\boldsymbol{B}\|, \boldsymbol{q}_{3}=\boldsymbol{C} /\|\boldsymbol{C}\|$.

19 If $A=Q R$ then $A^{\mathrm{T}} A=R^{\mathrm{T}} Q^{\mathrm{T}} Q R=R^{\mathrm{T}} R=$ lower triangular times upper triangular (this Cholesky factorization of $A^{\mathrm{T}} A$ uses the same R as Gram-Schmidt!). The example has $A=\left[\begin{array}{rr}-1 & 1 \\ 2 & 1 \\ 2 & 4\end{array}\right]=\frac{1}{3}\left[\begin{array}{rr}-1 & 2 \\ 2 & -1 \\ 2 & 2\end{array}\right]\left[\begin{array}{ll}3 & 3 \\ 0 & 3\end{array}\right]=Q R$ and the same R appears in $A^{\mathrm{T}} A=\left[\begin{array}{cc}9 & 9 \\ 9 & 18\end{array}\right]=\left[\begin{array}{ll}3 & 0 \\ 3 & 3\end{array}\right]\left[\begin{array}{ll}3 & 3 \\ 0 & 3\end{array}\right]=R^{\mathrm{T}} R$.
20 (a) True because $Q^{\mathrm{T}} Q=I$ leads to $\left(Q^{-1}\right)\left(Q^{-1}\right)=I$.
(b) True. $Q \boldsymbol{x}=x_{1} \boldsymbol{q}_{1}+x_{2} \boldsymbol{q}_{2} .\|Q \boldsymbol{x}\|^{2}=x_{1}^{2}+x_{2}^{2}$ because $\boldsymbol{q}_{1} \cdot \boldsymbol{q}_{2}=0$. Also $\|Q \boldsymbol{x}\|^{2}=\boldsymbol{x}^{\mathrm{T}} Q^{\mathrm{T}} Q \boldsymbol{x}=\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}$.

21 The orthonormal vectors are $\boldsymbol{q}_{1}=(1,1,1,1) / 2$ and $\boldsymbol{q}_{2}=(-5,-1,1,5) / \sqrt{52}$. Then $\boldsymbol{b}=(-4,-3,3,0)$ projects to $\boldsymbol{p}=\left(\boldsymbol{q}_{1}^{\mathrm{T}} \boldsymbol{b}\right) \boldsymbol{q}_{1}+\left(\boldsymbol{q}_{2}^{\mathrm{T}} \boldsymbol{b}\right) \boldsymbol{q}_{2}=(-7,-3,-1,3) / 2$. And $\boldsymbol{b}-\boldsymbol{p}=(-1,-3,7,-3) / 2$ is orthogonal to both \boldsymbol{q}_{1} and \boldsymbol{q}_{2}.
$22 A=(1,1,2), B=(1,-1,0), C=(-1,-1,1)$. These are not yet unit vectors. As in Problem 18, Gram-Schmidt will divide by $\|\boldsymbol{A}\|$ and $\|\boldsymbol{B}\|$ and $\|\boldsymbol{C}\|$.

23 You can see why $\boldsymbol{q}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \boldsymbol{q}_{2}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], \boldsymbol{q}_{3}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right] . A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{lll}1 & 2 & 4 \\ 0 & 3 & 6 \\ 0 & 0 & 5\end{array}\right]=$ $Q R$. This Q is just a permutation matrix-certainly orthogonal.

24 (a) One basis for the subspace \boldsymbol{S} of solutions to $x_{1}+x_{2}+x_{3}-x_{4}=0$ is the 3 special solutions $\boldsymbol{v}_{1}=(-1,1,0,0), \boldsymbol{v}_{2}=(-1,0,1,0), \boldsymbol{v}_{3}=(1,0,0,1)$
(b) Since \boldsymbol{S} contains solutions to $(1,1,1,-1)^{\mathrm{T}} \boldsymbol{x}=0$, a basis for \boldsymbol{S}^{\perp} is $(1,1,1,-1)$
(c) Split $(1,1,1,1)$ into $\boldsymbol{b}_{1}+\boldsymbol{b}_{2}$ by projection on \boldsymbol{S}^{\perp} and $\boldsymbol{S}: \boldsymbol{b}_{2}=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)$ and $\boldsymbol{b}_{1}=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{3}{2}\right)$.

25 This question shows 2 by 2 formulas for $Q R$; breakdown $R_{22}=0$ for singular A. Nonsingular example $\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]=\frac{1}{\sqrt{5}}\left[\begin{array}{rr}2 & -1 \\ 1 & 2\end{array}\right] \cdot \frac{1}{\sqrt{5}}\left[\begin{array}{ll}5 & 3 \\ 0 & 1\end{array}\right]$.

Singular example $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] \quad=\quad \frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right] \quad \frac{1}{\sqrt{2}}\left[\begin{array}{ll}2 & 2 \\ 0 & \mathbf{0}\end{array}\right]$. The Gram-Schmidt process breaks down when $a d-b c=0$.
$26\left(\boldsymbol{q}_{2}^{\mathrm{T}} \boldsymbol{C}^{*}\right) \boldsymbol{q}_{2}=\frac{\boldsymbol{B}^{\mathrm{T}} \boldsymbol{c}}{\boldsymbol{B}^{\mathrm{T}} \boldsymbol{B}} \boldsymbol{B}$ because $\boldsymbol{q}_{2}=\frac{\boldsymbol{B}}{\|\boldsymbol{B}\|}$ and the extra \boldsymbol{q}_{1} in \boldsymbol{C}^{*} is orthogonal to \boldsymbol{q}_{2}.
27 When \boldsymbol{a} and \boldsymbol{b} are not orthogonal, the projections onto these lines do not add to the projection onto the plane of \boldsymbol{a} and \boldsymbol{b}. We must use the orthogonal \boldsymbol{A} and \boldsymbol{B} (or orthonormal \boldsymbol{q}_{1} and \boldsymbol{q}_{2}) to be allowed to add projections on those lines.

28 There are $\frac{1}{2} m^{2} n$ multiplications to find the numbers $r_{k j}$ and the same for $v_{i j}$.
$29 \boldsymbol{q}_{1}=\frac{1}{3}(2,2,-1), \boldsymbol{q}_{2}=\frac{1}{3}(2,-1,2), \boldsymbol{q}_{3}=\frac{1}{3}(1,-2,-2)$.

30 The columns of the wavelet matrix W are orthonormal. Then $W^{-1}=W^{\mathrm{T}}$. This is a useful orthonormal basis with many zeros.

31 (a) $c=\frac{1}{2}$ normalizes all the orthogonal columns to have unit length (b) The projection $\left(\boldsymbol{a}^{\mathrm{T}} \boldsymbol{b} / \boldsymbol{a}^{\mathrm{T}} \boldsymbol{a}\right) \boldsymbol{a}$ of $\boldsymbol{b}=(1,1,1,1)$ onto the first column is $\boldsymbol{p}_{1}=\frac{1}{2}(-1,1,1,1)$. (Check $\boldsymbol{e}=\mathbf{0}$.) To project onto the plane, add $\boldsymbol{p}_{2}=\frac{1}{2}(1,-1,1,1)$ to get $(0,0,1,1)$.
$32 Q_{1}=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$ reflects across x axis, $Q_{2}=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0\end{array}\right]$ across plane $y+z=0$.
33 Orthogonal and lower triangular $\Rightarrow \pm 1$ on the main diagonal and zeros elsewhere.

34 (a) $Q \boldsymbol{u}=\left(I-2 \boldsymbol{u} \boldsymbol{u}^{\mathrm{T}}\right) \boldsymbol{u}=\boldsymbol{u}-2 \boldsymbol{u} \boldsymbol{u}^{\mathrm{T}} \boldsymbol{u}$. This is $-\boldsymbol{u}$, provided that $\boldsymbol{u}^{\mathrm{T}} \boldsymbol{u}$ equals 1
(b) $Q \boldsymbol{v}=\left(I-2 \boldsymbol{u} \boldsymbol{u}^{\mathrm{T}}\right) \boldsymbol{v}=\boldsymbol{u}-2 \boldsymbol{u} \boldsymbol{u}^{\mathrm{T}} \boldsymbol{v}=\boldsymbol{u}$, provided that $\boldsymbol{u}^{\mathrm{T}} \boldsymbol{v}=0$.

35 Starting from $\boldsymbol{A}=(1,-1,0,0)$, the orthogonal (not orthonormal) vectors $\boldsymbol{B}=$ $(1,1,-2,0)$ and $\boldsymbol{C}=(1,1,1,-3)$ and $\boldsymbol{D}=(1,1,1,1)$ are in the directions of $\boldsymbol{q}_{2}, \boldsymbol{q}_{3}, \boldsymbol{q}_{4}$. The 4 by 4 and 5 by 5 matrices with integer orthogonal columns (not orthogonal rows, since not orthonormal $Q!$) are

$$
\left[\begin{array}{llll}
\boldsymbol{A} & \boldsymbol{B} & \boldsymbol{C} & \boldsymbol{D}
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
-1 & 1 & 1 & 1 \\
0 & -2 & 1 & 1 \\
0 & 0 & -3 & 1
\end{array}\right] \text { and }\left[\begin{array}{rrrrr}
1 & 1 & 1 & 1 & 1 \\
-1 & 1 & 1 & 1 & 1 \\
0 & -2 & 1 & 1 & 1 \\
0 & 0 & -3 & 1 & 1 \\
0 & 0 & 0 & -4 & 1
\end{array}\right]
$$

$36[Q, R]=\boldsymbol{q r}(A)$ produces from $A(m$ by n of rank $n)$ a "full-size" square $Q=\left[\begin{array}{ll}Q_{1} & Q_{2}\end{array}\right]$ and $\left[\begin{array}{l}R \\ 0\end{array}\right]$. The columns of Q_{1} are the orthonormal basis from Gram-Schmidt of the column space of A. The $m-n$ columns of Q_{2} are an orthonormal basis for the left nullspace of A. Together the columns of $Q=\left[\begin{array}{ll}Q_{1} & Q_{2}\end{array}\right]$ are an orthonormal basis for \mathbf{R}^{m}.

37 This question describes the next \boldsymbol{q}_{n+1} in Gram-Schmidt using the matrix Q with the columns $\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{n}$ (instead of using those \boldsymbol{q} 's separately). Start from \boldsymbol{a}, subtract its projection $\boldsymbol{p}=Q Q^{\mathrm{T}} \boldsymbol{a}$ onto the earlier \boldsymbol{q} 's, divide by the length of $\boldsymbol{e}=\boldsymbol{a}-Q Q^{\mathrm{T}} \boldsymbol{a}$ to get the next $\boldsymbol{q}_{n+1}=\boldsymbol{e} /\|\boldsymbol{e}\|$.

